This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for oacomf1o . (Contributed by Mario Carneiro, 30-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | oacomf1olem.1 | ⊢ 𝐹 = ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 +o 𝑥 ) ) | |
| Assertion | oacomf1olem | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐹 : 𝐴 –1-1-onto→ ran 𝐹 ∧ ( ran 𝐹 ∩ 𝐵 ) = ∅ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oacomf1olem.1 | ⊢ 𝐹 = ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 +o 𝑥 ) ) | |
| 2 | oaf1o | ⊢ ( 𝐵 ∈ On → ( 𝑥 ∈ On ↦ ( 𝐵 +o 𝑥 ) ) : On –1-1-onto→ ( On ∖ 𝐵 ) ) | |
| 3 | 2 | adantl | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝑥 ∈ On ↦ ( 𝐵 +o 𝑥 ) ) : On –1-1-onto→ ( On ∖ 𝐵 ) ) |
| 4 | f1of1 | ⊢ ( ( 𝑥 ∈ On ↦ ( 𝐵 +o 𝑥 ) ) : On –1-1-onto→ ( On ∖ 𝐵 ) → ( 𝑥 ∈ On ↦ ( 𝐵 +o 𝑥 ) ) : On –1-1→ ( On ∖ 𝐵 ) ) | |
| 5 | 3 4 | syl | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝑥 ∈ On ↦ ( 𝐵 +o 𝑥 ) ) : On –1-1→ ( On ∖ 𝐵 ) ) |
| 6 | onss | ⊢ ( 𝐴 ∈ On → 𝐴 ⊆ On ) | |
| 7 | 6 | adantr | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → 𝐴 ⊆ On ) |
| 8 | f1ssres | ⊢ ( ( ( 𝑥 ∈ On ↦ ( 𝐵 +o 𝑥 ) ) : On –1-1→ ( On ∖ 𝐵 ) ∧ 𝐴 ⊆ On ) → ( ( 𝑥 ∈ On ↦ ( 𝐵 +o 𝑥 ) ) ↾ 𝐴 ) : 𝐴 –1-1→ ( On ∖ 𝐵 ) ) | |
| 9 | 5 7 8 | syl2anc | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( 𝑥 ∈ On ↦ ( 𝐵 +o 𝑥 ) ) ↾ 𝐴 ) : 𝐴 –1-1→ ( On ∖ 𝐵 ) ) |
| 10 | 7 | resmptd | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( 𝑥 ∈ On ↦ ( 𝐵 +o 𝑥 ) ) ↾ 𝐴 ) = ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 +o 𝑥 ) ) ) |
| 11 | 10 1 | eqtr4di | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( 𝑥 ∈ On ↦ ( 𝐵 +o 𝑥 ) ) ↾ 𝐴 ) = 𝐹 ) |
| 12 | f1eq1 | ⊢ ( ( ( 𝑥 ∈ On ↦ ( 𝐵 +o 𝑥 ) ) ↾ 𝐴 ) = 𝐹 → ( ( ( 𝑥 ∈ On ↦ ( 𝐵 +o 𝑥 ) ) ↾ 𝐴 ) : 𝐴 –1-1→ ( On ∖ 𝐵 ) ↔ 𝐹 : 𝐴 –1-1→ ( On ∖ 𝐵 ) ) ) | |
| 13 | 11 12 | syl | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( ( 𝑥 ∈ On ↦ ( 𝐵 +o 𝑥 ) ) ↾ 𝐴 ) : 𝐴 –1-1→ ( On ∖ 𝐵 ) ↔ 𝐹 : 𝐴 –1-1→ ( On ∖ 𝐵 ) ) ) |
| 14 | 9 13 | mpbid | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → 𝐹 : 𝐴 –1-1→ ( On ∖ 𝐵 ) ) |
| 15 | f1f1orn | ⊢ ( 𝐹 : 𝐴 –1-1→ ( On ∖ 𝐵 ) → 𝐹 : 𝐴 –1-1-onto→ ran 𝐹 ) | |
| 16 | 14 15 | syl | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → 𝐹 : 𝐴 –1-1-onto→ ran 𝐹 ) |
| 17 | f1f | ⊢ ( 𝐹 : 𝐴 –1-1→ ( On ∖ 𝐵 ) → 𝐹 : 𝐴 ⟶ ( On ∖ 𝐵 ) ) | |
| 18 | frn | ⊢ ( 𝐹 : 𝐴 ⟶ ( On ∖ 𝐵 ) → ran 𝐹 ⊆ ( On ∖ 𝐵 ) ) | |
| 19 | 14 17 18 | 3syl | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ran 𝐹 ⊆ ( On ∖ 𝐵 ) ) |
| 20 | 19 | difss2d | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ran 𝐹 ⊆ On ) |
| 21 | reldisj | ⊢ ( ran 𝐹 ⊆ On → ( ( ran 𝐹 ∩ 𝐵 ) = ∅ ↔ ran 𝐹 ⊆ ( On ∖ 𝐵 ) ) ) | |
| 22 | 20 21 | syl | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( ran 𝐹 ∩ 𝐵 ) = ∅ ↔ ran 𝐹 ⊆ ( On ∖ 𝐵 ) ) ) |
| 23 | 19 22 | mpbird | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ran 𝐹 ∩ 𝐵 ) = ∅ ) |
| 24 | 16 23 | jca | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐹 : 𝐴 –1-1-onto→ ran 𝐹 ∧ ( ran 𝐹 ∩ 𝐵 ) = ∅ ) ) |