This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ordinal addition is not commutative. This theorem shows a counterexample. Remark in TakeutiZaring p. 60. (Contributed by NM, 10-Dec-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | oancom | ⊢ ( 1o +o ω ) ≠ ( ω +o 1o ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omex | ⊢ ω ∈ V | |
| 2 | 1 | sucid | ⊢ ω ∈ suc ω |
| 3 | omelon | ⊢ ω ∈ On | |
| 4 | 1onn | ⊢ 1o ∈ ω | |
| 5 | oaabslem | ⊢ ( ( ω ∈ On ∧ 1o ∈ ω ) → ( 1o +o ω ) = ω ) | |
| 6 | 3 4 5 | mp2an | ⊢ ( 1o +o ω ) = ω |
| 7 | oa1suc | ⊢ ( ω ∈ On → ( ω +o 1o ) = suc ω ) | |
| 8 | 3 7 | ax-mp | ⊢ ( ω +o 1o ) = suc ω |
| 9 | 2 6 8 | 3eltr4i | ⊢ ( 1o +o ω ) ∈ ( ω +o 1o ) |
| 10 | 1on | ⊢ 1o ∈ On | |
| 11 | oacl | ⊢ ( ( 1o ∈ On ∧ ω ∈ On ) → ( 1o +o ω ) ∈ On ) | |
| 12 | 10 3 11 | mp2an | ⊢ ( 1o +o ω ) ∈ On |
| 13 | oacl | ⊢ ( ( ω ∈ On ∧ 1o ∈ On ) → ( ω +o 1o ) ∈ On ) | |
| 14 | 3 10 13 | mp2an | ⊢ ( ω +o 1o ) ∈ On |
| 15 | onelpss | ⊢ ( ( ( 1o +o ω ) ∈ On ∧ ( ω +o 1o ) ∈ On ) → ( ( 1o +o ω ) ∈ ( ω +o 1o ) ↔ ( ( 1o +o ω ) ⊆ ( ω +o 1o ) ∧ ( 1o +o ω ) ≠ ( ω +o 1o ) ) ) ) | |
| 16 | 12 14 15 | mp2an | ⊢ ( ( 1o +o ω ) ∈ ( ω +o 1o ) ↔ ( ( 1o +o ω ) ⊆ ( ω +o 1o ) ∧ ( 1o +o ω ) ≠ ( ω +o 1o ) ) ) |
| 17 | 16 | simprbi | ⊢ ( ( 1o +o ω ) ∈ ( ω +o 1o ) → ( 1o +o ω ) ≠ ( ω +o 1o ) ) |
| 18 | 9 17 | ax-mp | ⊢ ( 1o +o ω ) ≠ ( ω +o 1o ) |