This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define a bijection from A +o B to B +o A . Thus, the two are equinumerous even if they are not equal (which sometimes occurs, e.g., oancom ). (Contributed by Mario Carneiro, 30-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | oacomf1o.1 | |- F = ( ( x e. A |-> ( B +o x ) ) u. `' ( x e. B |-> ( A +o x ) ) ) |
|
| Assertion | oacomf1o | |- ( ( A e. On /\ B e. On ) -> F : ( A +o B ) -1-1-onto-> ( B +o A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oacomf1o.1 | |- F = ( ( x e. A |-> ( B +o x ) ) u. `' ( x e. B |-> ( A +o x ) ) ) |
|
| 2 | eqid | |- ( x e. A |-> ( B +o x ) ) = ( x e. A |-> ( B +o x ) ) |
|
| 3 | 2 | oacomf1olem | |- ( ( A e. On /\ B e. On ) -> ( ( x e. A |-> ( B +o x ) ) : A -1-1-onto-> ran ( x e. A |-> ( B +o x ) ) /\ ( ran ( x e. A |-> ( B +o x ) ) i^i B ) = (/) ) ) |
| 4 | 3 | simpld | |- ( ( A e. On /\ B e. On ) -> ( x e. A |-> ( B +o x ) ) : A -1-1-onto-> ran ( x e. A |-> ( B +o x ) ) ) |
| 5 | eqid | |- ( x e. B |-> ( A +o x ) ) = ( x e. B |-> ( A +o x ) ) |
|
| 6 | 5 | oacomf1olem | |- ( ( B e. On /\ A e. On ) -> ( ( x e. B |-> ( A +o x ) ) : B -1-1-onto-> ran ( x e. B |-> ( A +o x ) ) /\ ( ran ( x e. B |-> ( A +o x ) ) i^i A ) = (/) ) ) |
| 7 | 6 | ancoms | |- ( ( A e. On /\ B e. On ) -> ( ( x e. B |-> ( A +o x ) ) : B -1-1-onto-> ran ( x e. B |-> ( A +o x ) ) /\ ( ran ( x e. B |-> ( A +o x ) ) i^i A ) = (/) ) ) |
| 8 | 7 | simpld | |- ( ( A e. On /\ B e. On ) -> ( x e. B |-> ( A +o x ) ) : B -1-1-onto-> ran ( x e. B |-> ( A +o x ) ) ) |
| 9 | f1ocnv | |- ( ( x e. B |-> ( A +o x ) ) : B -1-1-onto-> ran ( x e. B |-> ( A +o x ) ) -> `' ( x e. B |-> ( A +o x ) ) : ran ( x e. B |-> ( A +o x ) ) -1-1-onto-> B ) |
|
| 10 | 8 9 | syl | |- ( ( A e. On /\ B e. On ) -> `' ( x e. B |-> ( A +o x ) ) : ran ( x e. B |-> ( A +o x ) ) -1-1-onto-> B ) |
| 11 | incom | |- ( A i^i ran ( x e. B |-> ( A +o x ) ) ) = ( ran ( x e. B |-> ( A +o x ) ) i^i A ) |
|
| 12 | 7 | simprd | |- ( ( A e. On /\ B e. On ) -> ( ran ( x e. B |-> ( A +o x ) ) i^i A ) = (/) ) |
| 13 | 11 12 | eqtrid | |- ( ( A e. On /\ B e. On ) -> ( A i^i ran ( x e. B |-> ( A +o x ) ) ) = (/) ) |
| 14 | 3 | simprd | |- ( ( A e. On /\ B e. On ) -> ( ran ( x e. A |-> ( B +o x ) ) i^i B ) = (/) ) |
| 15 | f1oun | |- ( ( ( ( x e. A |-> ( B +o x ) ) : A -1-1-onto-> ran ( x e. A |-> ( B +o x ) ) /\ `' ( x e. B |-> ( A +o x ) ) : ran ( x e. B |-> ( A +o x ) ) -1-1-onto-> B ) /\ ( ( A i^i ran ( x e. B |-> ( A +o x ) ) ) = (/) /\ ( ran ( x e. A |-> ( B +o x ) ) i^i B ) = (/) ) ) -> ( ( x e. A |-> ( B +o x ) ) u. `' ( x e. B |-> ( A +o x ) ) ) : ( A u. ran ( x e. B |-> ( A +o x ) ) ) -1-1-onto-> ( ran ( x e. A |-> ( B +o x ) ) u. B ) ) |
|
| 16 | 4 10 13 14 15 | syl22anc | |- ( ( A e. On /\ B e. On ) -> ( ( x e. A |-> ( B +o x ) ) u. `' ( x e. B |-> ( A +o x ) ) ) : ( A u. ran ( x e. B |-> ( A +o x ) ) ) -1-1-onto-> ( ran ( x e. A |-> ( B +o x ) ) u. B ) ) |
| 17 | f1oeq1 | |- ( F = ( ( x e. A |-> ( B +o x ) ) u. `' ( x e. B |-> ( A +o x ) ) ) -> ( F : ( A u. ran ( x e. B |-> ( A +o x ) ) ) -1-1-onto-> ( ran ( x e. A |-> ( B +o x ) ) u. B ) <-> ( ( x e. A |-> ( B +o x ) ) u. `' ( x e. B |-> ( A +o x ) ) ) : ( A u. ran ( x e. B |-> ( A +o x ) ) ) -1-1-onto-> ( ran ( x e. A |-> ( B +o x ) ) u. B ) ) ) |
|
| 18 | 1 17 | ax-mp | |- ( F : ( A u. ran ( x e. B |-> ( A +o x ) ) ) -1-1-onto-> ( ran ( x e. A |-> ( B +o x ) ) u. B ) <-> ( ( x e. A |-> ( B +o x ) ) u. `' ( x e. B |-> ( A +o x ) ) ) : ( A u. ran ( x e. B |-> ( A +o x ) ) ) -1-1-onto-> ( ran ( x e. A |-> ( B +o x ) ) u. B ) ) |
| 19 | 16 18 | sylibr | |- ( ( A e. On /\ B e. On ) -> F : ( A u. ran ( x e. B |-> ( A +o x ) ) ) -1-1-onto-> ( ran ( x e. A |-> ( B +o x ) ) u. B ) ) |
| 20 | oarec | |- ( ( A e. On /\ B e. On ) -> ( A +o B ) = ( A u. ran ( x e. B |-> ( A +o x ) ) ) ) |
|
| 21 | 20 | f1oeq2d | |- ( ( A e. On /\ B e. On ) -> ( F : ( A +o B ) -1-1-onto-> ( ran ( x e. A |-> ( B +o x ) ) u. B ) <-> F : ( A u. ran ( x e. B |-> ( A +o x ) ) ) -1-1-onto-> ( ran ( x e. A |-> ( B +o x ) ) u. B ) ) ) |
| 22 | 19 21 | mpbird | |- ( ( A e. On /\ B e. On ) -> F : ( A +o B ) -1-1-onto-> ( ran ( x e. A |-> ( B +o x ) ) u. B ) ) |
| 23 | oarec | |- ( ( B e. On /\ A e. On ) -> ( B +o A ) = ( B u. ran ( x e. A |-> ( B +o x ) ) ) ) |
|
| 24 | 23 | ancoms | |- ( ( A e. On /\ B e. On ) -> ( B +o A ) = ( B u. ran ( x e. A |-> ( B +o x ) ) ) ) |
| 25 | uncom | |- ( B u. ran ( x e. A |-> ( B +o x ) ) ) = ( ran ( x e. A |-> ( B +o x ) ) u. B ) |
|
| 26 | 24 25 | eqtrdi | |- ( ( A e. On /\ B e. On ) -> ( B +o A ) = ( ran ( x e. A |-> ( B +o x ) ) u. B ) ) |
| 27 | 26 | f1oeq3d | |- ( ( A e. On /\ B e. On ) -> ( F : ( A +o B ) -1-1-onto-> ( B +o A ) <-> F : ( A +o B ) -1-1-onto-> ( ran ( x e. A |-> ( B +o x ) ) u. B ) ) ) |
| 28 | 22 27 | mpbird | |- ( ( A e. On /\ B e. On ) -> F : ( A +o B ) -1-1-onto-> ( B +o A ) ) |