This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The product of an eventually bounded function and a function of limit zero has limit zero. (Contributed by Mario Carneiro, 18-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | o1rlimmul | ⊢ ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) → ( 𝐹 ∘f · 𝐺 ) ⇝𝑟 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | o1f | ⊢ ( 𝐹 ∈ 𝑂(1) → 𝐹 : dom 𝐹 ⟶ ℂ ) | |
| 2 | 1 | adantr | ⊢ ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) → 𝐹 : dom 𝐹 ⟶ ℂ ) |
| 3 | 2 | ffnd | ⊢ ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) → 𝐹 Fn dom 𝐹 ) |
| 4 | rlimf | ⊢ ( 𝐺 ⇝𝑟 0 → 𝐺 : dom 𝐺 ⟶ ℂ ) | |
| 5 | 4 | adantl | ⊢ ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) → 𝐺 : dom 𝐺 ⟶ ℂ ) |
| 6 | 5 | ffnd | ⊢ ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) → 𝐺 Fn dom 𝐺 ) |
| 7 | o1dm | ⊢ ( 𝐹 ∈ 𝑂(1) → dom 𝐹 ⊆ ℝ ) | |
| 8 | 7 | adantr | ⊢ ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) → dom 𝐹 ⊆ ℝ ) |
| 9 | reex | ⊢ ℝ ∈ V | |
| 10 | ssexg | ⊢ ( ( dom 𝐹 ⊆ ℝ ∧ ℝ ∈ V ) → dom 𝐹 ∈ V ) | |
| 11 | 8 9 10 | sylancl | ⊢ ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) → dom 𝐹 ∈ V ) |
| 12 | rlimss | ⊢ ( 𝐺 ⇝𝑟 0 → dom 𝐺 ⊆ ℝ ) | |
| 13 | 12 | adantl | ⊢ ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) → dom 𝐺 ⊆ ℝ ) |
| 14 | ssexg | ⊢ ( ( dom 𝐺 ⊆ ℝ ∧ ℝ ∈ V ) → dom 𝐺 ∈ V ) | |
| 15 | 13 9 14 | sylancl | ⊢ ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) → dom 𝐺 ∈ V ) |
| 16 | eqid | ⊢ ( dom 𝐹 ∩ dom 𝐺 ) = ( dom 𝐹 ∩ dom 𝐺 ) | |
| 17 | eqidd | ⊢ ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) ∧ 𝑥 ∈ dom 𝐹 ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) | |
| 18 | eqidd | ⊢ ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) ∧ 𝑥 ∈ dom 𝐺 ) → ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) | |
| 19 | 3 6 11 15 16 17 18 | offval | ⊢ ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) → ( 𝐹 ∘f · 𝐺 ) = ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ( 𝐹 ‘ 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) ) ) |
| 20 | o1bdd | ⊢ ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐹 : dom 𝐹 ⟶ ℂ ) → ∃ 𝑎 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑥 ∈ dom 𝐹 ( 𝑎 ≤ 𝑥 → ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑚 ) ) | |
| 21 | 1 20 | mpdan | ⊢ ( 𝐹 ∈ 𝑂(1) → ∃ 𝑎 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑥 ∈ dom 𝐹 ( 𝑎 ≤ 𝑥 → ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑚 ) ) |
| 22 | 21 | ad2antrr | ⊢ ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) ∧ 𝑦 ∈ ℝ+ ) → ∃ 𝑎 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑥 ∈ dom 𝐹 ( 𝑎 ≤ 𝑥 → ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑚 ) ) |
| 23 | fvexd | ⊢ ( ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ ) ) ∧ 𝑥 ∈ dom 𝐺 ) → ( 𝐺 ‘ 𝑥 ) ∈ V ) | |
| 24 | 23 | ralrimiva | ⊢ ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ ) ) → ∀ 𝑥 ∈ dom 𝐺 ( 𝐺 ‘ 𝑥 ) ∈ V ) |
| 25 | simplr | ⊢ ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ ) ) → 𝑦 ∈ ℝ+ ) | |
| 26 | recn | ⊢ ( 𝑚 ∈ ℝ → 𝑚 ∈ ℂ ) | |
| 27 | 26 | ad2antll | ⊢ ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ ) ) → 𝑚 ∈ ℂ ) |
| 28 | 27 | abscld | ⊢ ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ ) ) → ( abs ‘ 𝑚 ) ∈ ℝ ) |
| 29 | 27 | absge0d | ⊢ ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ ) ) → 0 ≤ ( abs ‘ 𝑚 ) ) |
| 30 | 28 29 | ge0p1rpd | ⊢ ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ ) ) → ( ( abs ‘ 𝑚 ) + 1 ) ∈ ℝ+ ) |
| 31 | 25 30 | rpdivcld | ⊢ ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ ) ) → ( 𝑦 / ( ( abs ‘ 𝑚 ) + 1 ) ) ∈ ℝ+ ) |
| 32 | 5 | feqmptd | ⊢ ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) → 𝐺 = ( 𝑥 ∈ dom 𝐺 ↦ ( 𝐺 ‘ 𝑥 ) ) ) |
| 33 | simpr | ⊢ ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) → 𝐺 ⇝𝑟 0 ) | |
| 34 | 32 33 | eqbrtrrd | ⊢ ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) → ( 𝑥 ∈ dom 𝐺 ↦ ( 𝐺 ‘ 𝑥 ) ) ⇝𝑟 0 ) |
| 35 | 34 | ad2antrr | ⊢ ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ ) ) → ( 𝑥 ∈ dom 𝐺 ↦ ( 𝐺 ‘ 𝑥 ) ) ⇝𝑟 0 ) |
| 36 | 24 31 35 | rlimi | ⊢ ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ ) ) → ∃ 𝑏 ∈ ℝ ∀ 𝑥 ∈ dom 𝐺 ( 𝑏 ≤ 𝑥 → ( abs ‘ ( ( 𝐺 ‘ 𝑥 ) − 0 ) ) < ( 𝑦 / ( ( abs ‘ 𝑚 ) + 1 ) ) ) ) |
| 37 | inss1 | ⊢ ( dom 𝐹 ∩ dom 𝐺 ) ⊆ dom 𝐹 | |
| 38 | ssralv | ⊢ ( ( dom 𝐹 ∩ dom 𝐺 ) ⊆ dom 𝐹 → ( ∀ 𝑥 ∈ dom 𝐹 ( 𝑎 ≤ 𝑥 → ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑚 ) → ∀ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ( 𝑎 ≤ 𝑥 → ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑚 ) ) ) | |
| 39 | 37 38 | ax-mp | ⊢ ( ∀ 𝑥 ∈ dom 𝐹 ( 𝑎 ≤ 𝑥 → ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑚 ) → ∀ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ( 𝑎 ≤ 𝑥 → ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑚 ) ) |
| 40 | inss2 | ⊢ ( dom 𝐹 ∩ dom 𝐺 ) ⊆ dom 𝐺 | |
| 41 | ssralv | ⊢ ( ( dom 𝐹 ∩ dom 𝐺 ) ⊆ dom 𝐺 → ( ∀ 𝑥 ∈ dom 𝐺 ( 𝑏 ≤ 𝑥 → ( abs ‘ ( ( 𝐺 ‘ 𝑥 ) − 0 ) ) < ( 𝑦 / ( ( abs ‘ 𝑚 ) + 1 ) ) ) → ∀ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ( 𝑏 ≤ 𝑥 → ( abs ‘ ( ( 𝐺 ‘ 𝑥 ) − 0 ) ) < ( 𝑦 / ( ( abs ‘ 𝑚 ) + 1 ) ) ) ) ) | |
| 42 | 40 41 | ax-mp | ⊢ ( ∀ 𝑥 ∈ dom 𝐺 ( 𝑏 ≤ 𝑥 → ( abs ‘ ( ( 𝐺 ‘ 𝑥 ) − 0 ) ) < ( 𝑦 / ( ( abs ‘ 𝑚 ) + 1 ) ) ) → ∀ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ( 𝑏 ≤ 𝑥 → ( abs ‘ ( ( 𝐺 ‘ 𝑥 ) − 0 ) ) < ( 𝑦 / ( ( abs ‘ 𝑚 ) + 1 ) ) ) ) |
| 43 | 39 42 | anim12i | ⊢ ( ( ∀ 𝑥 ∈ dom 𝐹 ( 𝑎 ≤ 𝑥 → ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑚 ) ∧ ∀ 𝑥 ∈ dom 𝐺 ( 𝑏 ≤ 𝑥 → ( abs ‘ ( ( 𝐺 ‘ 𝑥 ) − 0 ) ) < ( 𝑦 / ( ( abs ‘ 𝑚 ) + 1 ) ) ) ) → ( ∀ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ( 𝑎 ≤ 𝑥 → ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑚 ) ∧ ∀ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ( 𝑏 ≤ 𝑥 → ( abs ‘ ( ( 𝐺 ‘ 𝑥 ) − 0 ) ) < ( 𝑦 / ( ( abs ‘ 𝑚 ) + 1 ) ) ) ) ) |
| 44 | r19.26 | ⊢ ( ∀ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ( ( 𝑎 ≤ 𝑥 → ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑚 ) ∧ ( 𝑏 ≤ 𝑥 → ( abs ‘ ( ( 𝐺 ‘ 𝑥 ) − 0 ) ) < ( 𝑦 / ( ( abs ‘ 𝑚 ) + 1 ) ) ) ) ↔ ( ∀ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ( 𝑎 ≤ 𝑥 → ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑚 ) ∧ ∀ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ( 𝑏 ≤ 𝑥 → ( abs ‘ ( ( 𝐺 ‘ 𝑥 ) − 0 ) ) < ( 𝑦 / ( ( abs ‘ 𝑚 ) + 1 ) ) ) ) ) | |
| 45 | 43 44 | sylibr | ⊢ ( ( ∀ 𝑥 ∈ dom 𝐹 ( 𝑎 ≤ 𝑥 → ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑚 ) ∧ ∀ 𝑥 ∈ dom 𝐺 ( 𝑏 ≤ 𝑥 → ( abs ‘ ( ( 𝐺 ‘ 𝑥 ) − 0 ) ) < ( 𝑦 / ( ( abs ‘ 𝑚 ) + 1 ) ) ) ) → ∀ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ( ( 𝑎 ≤ 𝑥 → ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑚 ) ∧ ( 𝑏 ≤ 𝑥 → ( abs ‘ ( ( 𝐺 ‘ 𝑥 ) − 0 ) ) < ( 𝑦 / ( ( abs ‘ 𝑚 ) + 1 ) ) ) ) ) |
| 46 | anim12 | ⊢ ( ( ( 𝑎 ≤ 𝑥 → ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑚 ) ∧ ( 𝑏 ≤ 𝑥 → ( abs ‘ ( ( 𝐺 ‘ 𝑥 ) − 0 ) ) < ( 𝑦 / ( ( abs ‘ 𝑚 ) + 1 ) ) ) ) → ( ( 𝑎 ≤ 𝑥 ∧ 𝑏 ≤ 𝑥 ) → ( ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑚 ∧ ( abs ‘ ( ( 𝐺 ‘ 𝑥 ) − 0 ) ) < ( 𝑦 / ( ( abs ‘ 𝑚 ) + 1 ) ) ) ) ) | |
| 47 | 46 | ralimi | ⊢ ( ∀ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ( ( 𝑎 ≤ 𝑥 → ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑚 ) ∧ ( 𝑏 ≤ 𝑥 → ( abs ‘ ( ( 𝐺 ‘ 𝑥 ) − 0 ) ) < ( 𝑦 / ( ( abs ‘ 𝑚 ) + 1 ) ) ) ) → ∀ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ( ( 𝑎 ≤ 𝑥 ∧ 𝑏 ≤ 𝑥 ) → ( ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑚 ∧ ( abs ‘ ( ( 𝐺 ‘ 𝑥 ) − 0 ) ) < ( 𝑦 / ( ( abs ‘ 𝑚 ) + 1 ) ) ) ) ) |
| 48 | 45 47 | syl | ⊢ ( ( ∀ 𝑥 ∈ dom 𝐹 ( 𝑎 ≤ 𝑥 → ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑚 ) ∧ ∀ 𝑥 ∈ dom 𝐺 ( 𝑏 ≤ 𝑥 → ( abs ‘ ( ( 𝐺 ‘ 𝑥 ) − 0 ) ) < ( 𝑦 / ( ( abs ‘ 𝑚 ) + 1 ) ) ) ) → ∀ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ( ( 𝑎 ≤ 𝑥 ∧ 𝑏 ≤ 𝑥 ) → ( ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑚 ∧ ( abs ‘ ( ( 𝐺 ‘ 𝑥 ) − 0 ) ) < ( 𝑦 / ( ( abs ‘ 𝑚 ) + 1 ) ) ) ) ) |
| 49 | simplrl | ⊢ ( ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ ) ) ∧ ( 𝑏 ∈ ℝ ∧ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) ) → 𝑎 ∈ ℝ ) | |
| 50 | simprl | ⊢ ( ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ ) ) ∧ ( 𝑏 ∈ ℝ ∧ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) ) → 𝑏 ∈ ℝ ) | |
| 51 | 37 8 | sstrid | ⊢ ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) → ( dom 𝐹 ∩ dom 𝐺 ) ⊆ ℝ ) |
| 52 | 51 | ad3antrrr | ⊢ ( ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ ) ) ∧ ( 𝑏 ∈ ℝ ∧ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) ) → ( dom 𝐹 ∩ dom 𝐺 ) ⊆ ℝ ) |
| 53 | simprr | ⊢ ( ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ ) ) ∧ ( 𝑏 ∈ ℝ ∧ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) ) → 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) | |
| 54 | 52 53 | sseldd | ⊢ ( ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ ) ) ∧ ( 𝑏 ∈ ℝ ∧ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) ) → 𝑥 ∈ ℝ ) |
| 55 | maxle | ⊢ ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 ∈ ℝ ) → ( if ( 𝑎 ≤ 𝑏 , 𝑏 , 𝑎 ) ≤ 𝑥 ↔ ( 𝑎 ≤ 𝑥 ∧ 𝑏 ≤ 𝑥 ) ) ) | |
| 56 | 49 50 54 55 | syl3anc | ⊢ ( ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ ) ) ∧ ( 𝑏 ∈ ℝ ∧ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) ) → ( if ( 𝑎 ≤ 𝑏 , 𝑏 , 𝑎 ) ≤ 𝑥 ↔ ( 𝑎 ≤ 𝑥 ∧ 𝑏 ≤ 𝑥 ) ) ) |
| 57 | 56 | biimpd | ⊢ ( ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ ) ) ∧ ( 𝑏 ∈ ℝ ∧ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) ) → ( if ( 𝑎 ≤ 𝑏 , 𝑏 , 𝑎 ) ≤ 𝑥 → ( 𝑎 ≤ 𝑥 ∧ 𝑏 ≤ 𝑥 ) ) ) |
| 58 | 5 | ad3antrrr | ⊢ ( ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ ) ) ∧ ( 𝑏 ∈ ℝ ∧ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) ) → 𝐺 : dom 𝐺 ⟶ ℂ ) |
| 59 | 40 | sseli | ⊢ ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) → 𝑥 ∈ dom 𝐺 ) |
| 60 | 59 | ad2antll | ⊢ ( ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ ) ) ∧ ( 𝑏 ∈ ℝ ∧ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) ) → 𝑥 ∈ dom 𝐺 ) |
| 61 | 58 60 | ffvelcdmd | ⊢ ( ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ ) ) ∧ ( 𝑏 ∈ ℝ ∧ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) ) → ( 𝐺 ‘ 𝑥 ) ∈ ℂ ) |
| 62 | 61 | subid1d | ⊢ ( ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ ) ) ∧ ( 𝑏 ∈ ℝ ∧ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) ) → ( ( 𝐺 ‘ 𝑥 ) − 0 ) = ( 𝐺 ‘ 𝑥 ) ) |
| 63 | 62 | fveq2d | ⊢ ( ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ ) ) ∧ ( 𝑏 ∈ ℝ ∧ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) ) → ( abs ‘ ( ( 𝐺 ‘ 𝑥 ) − 0 ) ) = ( abs ‘ ( 𝐺 ‘ 𝑥 ) ) ) |
| 64 | 63 | breq1d | ⊢ ( ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ ) ) ∧ ( 𝑏 ∈ ℝ ∧ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) ) → ( ( abs ‘ ( ( 𝐺 ‘ 𝑥 ) − 0 ) ) < ( 𝑦 / ( ( abs ‘ 𝑚 ) + 1 ) ) ↔ ( abs ‘ ( 𝐺 ‘ 𝑥 ) ) < ( 𝑦 / ( ( abs ‘ 𝑚 ) + 1 ) ) ) ) |
| 65 | 61 | abscld | ⊢ ( ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ ) ) ∧ ( 𝑏 ∈ ℝ ∧ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) ) → ( abs ‘ ( 𝐺 ‘ 𝑥 ) ) ∈ ℝ ) |
| 66 | 31 | adantr | ⊢ ( ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ ) ) ∧ ( 𝑏 ∈ ℝ ∧ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) ) → ( 𝑦 / ( ( abs ‘ 𝑚 ) + 1 ) ) ∈ ℝ+ ) |
| 67 | 66 | rpred | ⊢ ( ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ ) ) ∧ ( 𝑏 ∈ ℝ ∧ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) ) → ( 𝑦 / ( ( abs ‘ 𝑚 ) + 1 ) ) ∈ ℝ ) |
| 68 | ltle | ⊢ ( ( ( abs ‘ ( 𝐺 ‘ 𝑥 ) ) ∈ ℝ ∧ ( 𝑦 / ( ( abs ‘ 𝑚 ) + 1 ) ) ∈ ℝ ) → ( ( abs ‘ ( 𝐺 ‘ 𝑥 ) ) < ( 𝑦 / ( ( abs ‘ 𝑚 ) + 1 ) ) → ( abs ‘ ( 𝐺 ‘ 𝑥 ) ) ≤ ( 𝑦 / ( ( abs ‘ 𝑚 ) + 1 ) ) ) ) | |
| 69 | 65 67 68 | syl2anc | ⊢ ( ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ ) ) ∧ ( 𝑏 ∈ ℝ ∧ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) ) → ( ( abs ‘ ( 𝐺 ‘ 𝑥 ) ) < ( 𝑦 / ( ( abs ‘ 𝑚 ) + 1 ) ) → ( abs ‘ ( 𝐺 ‘ 𝑥 ) ) ≤ ( 𝑦 / ( ( abs ‘ 𝑚 ) + 1 ) ) ) ) |
| 70 | 64 69 | sylbid | ⊢ ( ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ ) ) ∧ ( 𝑏 ∈ ℝ ∧ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) ) → ( ( abs ‘ ( ( 𝐺 ‘ 𝑥 ) − 0 ) ) < ( 𝑦 / ( ( abs ‘ 𝑚 ) + 1 ) ) → ( abs ‘ ( 𝐺 ‘ 𝑥 ) ) ≤ ( 𝑦 / ( ( abs ‘ 𝑚 ) + 1 ) ) ) ) |
| 71 | 70 | anim2d | ⊢ ( ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ ) ) ∧ ( 𝑏 ∈ ℝ ∧ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) ) → ( ( ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑚 ∧ ( abs ‘ ( ( 𝐺 ‘ 𝑥 ) − 0 ) ) < ( 𝑦 / ( ( abs ‘ 𝑚 ) + 1 ) ) ) → ( ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑚 ∧ ( abs ‘ ( 𝐺 ‘ 𝑥 ) ) ≤ ( 𝑦 / ( ( abs ‘ 𝑚 ) + 1 ) ) ) ) ) |
| 72 | 2 | ad3antrrr | ⊢ ( ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ ) ) ∧ ( 𝑏 ∈ ℝ ∧ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) ) → 𝐹 : dom 𝐹 ⟶ ℂ ) |
| 73 | 37 | sseli | ⊢ ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) → 𝑥 ∈ dom 𝐹 ) |
| 74 | 73 | ad2antll | ⊢ ( ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ ) ) ∧ ( 𝑏 ∈ ℝ ∧ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) ) → 𝑥 ∈ dom 𝐹 ) |
| 75 | 72 74 | ffvelcdmd | ⊢ ( ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ ) ) ∧ ( 𝑏 ∈ ℝ ∧ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ℂ ) |
| 76 | 75 | abscld | ⊢ ( ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ ) ) ∧ ( 𝑏 ∈ ℝ ∧ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) ) → ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ∈ ℝ ) |
| 77 | 75 | absge0d | ⊢ ( ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ ) ) ∧ ( 𝑏 ∈ ℝ ∧ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) ) → 0 ≤ ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
| 78 | 76 77 | jca | ⊢ ( ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ ) ) ∧ ( 𝑏 ∈ ℝ ∧ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) ) → ( ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ∈ ℝ ∧ 0 ≤ ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 79 | simplrr | ⊢ ( ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ ) ) ∧ ( 𝑏 ∈ ℝ ∧ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) ) → 𝑚 ∈ ℝ ) | |
| 80 | 61 | absge0d | ⊢ ( ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ ) ) ∧ ( 𝑏 ∈ ℝ ∧ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) ) → 0 ≤ ( abs ‘ ( 𝐺 ‘ 𝑥 ) ) ) |
| 81 | 65 80 | jca | ⊢ ( ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ ) ) ∧ ( 𝑏 ∈ ℝ ∧ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) ) → ( ( abs ‘ ( 𝐺 ‘ 𝑥 ) ) ∈ ℝ ∧ 0 ≤ ( abs ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) |
| 82 | lemul12a | ⊢ ( ( ( ( ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ∈ ℝ ∧ 0 ≤ ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ) ∧ 𝑚 ∈ ℝ ) ∧ ( ( ( abs ‘ ( 𝐺 ‘ 𝑥 ) ) ∈ ℝ ∧ 0 ≤ ( abs ‘ ( 𝐺 ‘ 𝑥 ) ) ) ∧ ( 𝑦 / ( ( abs ‘ 𝑚 ) + 1 ) ) ∈ ℝ ) ) → ( ( ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑚 ∧ ( abs ‘ ( 𝐺 ‘ 𝑥 ) ) ≤ ( 𝑦 / ( ( abs ‘ 𝑚 ) + 1 ) ) ) → ( ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) · ( abs ‘ ( 𝐺 ‘ 𝑥 ) ) ) ≤ ( 𝑚 · ( 𝑦 / ( ( abs ‘ 𝑚 ) + 1 ) ) ) ) ) | |
| 83 | 78 79 81 67 82 | syl22anc | ⊢ ( ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ ) ) ∧ ( 𝑏 ∈ ℝ ∧ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) ) → ( ( ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑚 ∧ ( abs ‘ ( 𝐺 ‘ 𝑥 ) ) ≤ ( 𝑦 / ( ( abs ‘ 𝑚 ) + 1 ) ) ) → ( ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) · ( abs ‘ ( 𝐺 ‘ 𝑥 ) ) ) ≤ ( 𝑚 · ( 𝑦 / ( ( abs ‘ 𝑚 ) + 1 ) ) ) ) ) |
| 84 | 75 61 | absmuld | ⊢ ( ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ ) ) ∧ ( 𝑏 ∈ ℝ ∧ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) ) = ( ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) · ( abs ‘ ( 𝐺 ‘ 𝑥 ) ) ) ) |
| 85 | 84 | breq1d | ⊢ ( ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ ) ) ∧ ( 𝑏 ∈ ℝ ∧ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) ) → ( ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) ) ≤ ( 𝑚 · ( 𝑦 / ( ( abs ‘ 𝑚 ) + 1 ) ) ) ↔ ( ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) · ( abs ‘ ( 𝐺 ‘ 𝑥 ) ) ) ≤ ( 𝑚 · ( 𝑦 / ( ( abs ‘ 𝑚 ) + 1 ) ) ) ) ) |
| 86 | 79 | recnd | ⊢ ( ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ ) ) ∧ ( 𝑏 ∈ ℝ ∧ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) ) → 𝑚 ∈ ℂ ) |
| 87 | 25 | adantr | ⊢ ( ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ ) ) ∧ ( 𝑏 ∈ ℝ ∧ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) ) → 𝑦 ∈ ℝ+ ) |
| 88 | 87 | rpcnd | ⊢ ( ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ ) ) ∧ ( 𝑏 ∈ ℝ ∧ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) ) → 𝑦 ∈ ℂ ) |
| 89 | 30 | adantr | ⊢ ( ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ ) ) ∧ ( 𝑏 ∈ ℝ ∧ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) ) → ( ( abs ‘ 𝑚 ) + 1 ) ∈ ℝ+ ) |
| 90 | 89 | rpcnd | ⊢ ( ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ ) ) ∧ ( 𝑏 ∈ ℝ ∧ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) ) → ( ( abs ‘ 𝑚 ) + 1 ) ∈ ℂ ) |
| 91 | 89 | rpne0d | ⊢ ( ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ ) ) ∧ ( 𝑏 ∈ ℝ ∧ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) ) → ( ( abs ‘ 𝑚 ) + 1 ) ≠ 0 ) |
| 92 | 86 88 90 91 | divassd | ⊢ ( ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ ) ) ∧ ( 𝑏 ∈ ℝ ∧ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) ) → ( ( 𝑚 · 𝑦 ) / ( ( abs ‘ 𝑚 ) + 1 ) ) = ( 𝑚 · ( 𝑦 / ( ( abs ‘ 𝑚 ) + 1 ) ) ) ) |
| 93 | peano2re | ⊢ ( ( abs ‘ 𝑚 ) ∈ ℝ → ( ( abs ‘ 𝑚 ) + 1 ) ∈ ℝ ) | |
| 94 | 28 93 | syl | ⊢ ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ ) ) → ( ( abs ‘ 𝑚 ) + 1 ) ∈ ℝ ) |
| 95 | 94 | adantr | ⊢ ( ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ ) ) ∧ ( 𝑏 ∈ ℝ ∧ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) ) → ( ( abs ‘ 𝑚 ) + 1 ) ∈ ℝ ) |
| 96 | 28 | adantr | ⊢ ( ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ ) ) ∧ ( 𝑏 ∈ ℝ ∧ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) ) → ( abs ‘ 𝑚 ) ∈ ℝ ) |
| 97 | 79 | leabsd | ⊢ ( ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ ) ) ∧ ( 𝑏 ∈ ℝ ∧ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) ) → 𝑚 ≤ ( abs ‘ 𝑚 ) ) |
| 98 | 96 | ltp1d | ⊢ ( ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ ) ) ∧ ( 𝑏 ∈ ℝ ∧ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) ) → ( abs ‘ 𝑚 ) < ( ( abs ‘ 𝑚 ) + 1 ) ) |
| 99 | 79 96 95 97 98 | lelttrd | ⊢ ( ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ ) ) ∧ ( 𝑏 ∈ ℝ ∧ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) ) → 𝑚 < ( ( abs ‘ 𝑚 ) + 1 ) ) |
| 100 | 79 95 87 99 | ltmul1dd | ⊢ ( ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ ) ) ∧ ( 𝑏 ∈ ℝ ∧ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) ) → ( 𝑚 · 𝑦 ) < ( ( ( abs ‘ 𝑚 ) + 1 ) · 𝑦 ) ) |
| 101 | 87 | rpred | ⊢ ( ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ ) ) ∧ ( 𝑏 ∈ ℝ ∧ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) ) → 𝑦 ∈ ℝ ) |
| 102 | 79 101 | remulcld | ⊢ ( ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ ) ) ∧ ( 𝑏 ∈ ℝ ∧ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) ) → ( 𝑚 · 𝑦 ) ∈ ℝ ) |
| 103 | 102 101 89 | ltdivmuld | ⊢ ( ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ ) ) ∧ ( 𝑏 ∈ ℝ ∧ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) ) → ( ( ( 𝑚 · 𝑦 ) / ( ( abs ‘ 𝑚 ) + 1 ) ) < 𝑦 ↔ ( 𝑚 · 𝑦 ) < ( ( ( abs ‘ 𝑚 ) + 1 ) · 𝑦 ) ) ) |
| 104 | 100 103 | mpbird | ⊢ ( ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ ) ) ∧ ( 𝑏 ∈ ℝ ∧ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) ) → ( ( 𝑚 · 𝑦 ) / ( ( abs ‘ 𝑚 ) + 1 ) ) < 𝑦 ) |
| 105 | 92 104 | eqbrtrrd | ⊢ ( ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ ) ) ∧ ( 𝑏 ∈ ℝ ∧ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) ) → ( 𝑚 · ( 𝑦 / ( ( abs ‘ 𝑚 ) + 1 ) ) ) < 𝑦 ) |
| 106 | 75 61 | mulcld | ⊢ ( ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ ) ) ∧ ( 𝑏 ∈ ℝ ∧ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) ) → ( ( 𝐹 ‘ 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) ∈ ℂ ) |
| 107 | 106 | abscld | ⊢ ( ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ ) ) ∧ ( 𝑏 ∈ ℝ ∧ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) ) ∈ ℝ ) |
| 108 | 79 67 | remulcld | ⊢ ( ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ ) ) ∧ ( 𝑏 ∈ ℝ ∧ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) ) → ( 𝑚 · ( 𝑦 / ( ( abs ‘ 𝑚 ) + 1 ) ) ) ∈ ℝ ) |
| 109 | lelttr | ⊢ ( ( ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) ) ∈ ℝ ∧ ( 𝑚 · ( 𝑦 / ( ( abs ‘ 𝑚 ) + 1 ) ) ) ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ( ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) ) ≤ ( 𝑚 · ( 𝑦 / ( ( abs ‘ 𝑚 ) + 1 ) ) ) ∧ ( 𝑚 · ( 𝑦 / ( ( abs ‘ 𝑚 ) + 1 ) ) ) < 𝑦 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) ) < 𝑦 ) ) | |
| 110 | 107 108 101 109 | syl3anc | ⊢ ( ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ ) ) ∧ ( 𝑏 ∈ ℝ ∧ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) ) → ( ( ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) ) ≤ ( 𝑚 · ( 𝑦 / ( ( abs ‘ 𝑚 ) + 1 ) ) ) ∧ ( 𝑚 · ( 𝑦 / ( ( abs ‘ 𝑚 ) + 1 ) ) ) < 𝑦 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) ) < 𝑦 ) ) |
| 111 | 105 110 | mpan2d | ⊢ ( ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ ) ) ∧ ( 𝑏 ∈ ℝ ∧ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) ) → ( ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) ) ≤ ( 𝑚 · ( 𝑦 / ( ( abs ‘ 𝑚 ) + 1 ) ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) ) < 𝑦 ) ) |
| 112 | 85 111 | sylbird | ⊢ ( ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ ) ) ∧ ( 𝑏 ∈ ℝ ∧ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) ) → ( ( ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) · ( abs ‘ ( 𝐺 ‘ 𝑥 ) ) ) ≤ ( 𝑚 · ( 𝑦 / ( ( abs ‘ 𝑚 ) + 1 ) ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) ) < 𝑦 ) ) |
| 113 | 71 83 112 | 3syld | ⊢ ( ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ ) ) ∧ ( 𝑏 ∈ ℝ ∧ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) ) → ( ( ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑚 ∧ ( abs ‘ ( ( 𝐺 ‘ 𝑥 ) − 0 ) ) < ( 𝑦 / ( ( abs ‘ 𝑚 ) + 1 ) ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) ) < 𝑦 ) ) |
| 114 | 57 113 | imim12d | ⊢ ( ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ ) ) ∧ ( 𝑏 ∈ ℝ ∧ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) ) → ( ( ( 𝑎 ≤ 𝑥 ∧ 𝑏 ≤ 𝑥 ) → ( ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑚 ∧ ( abs ‘ ( ( 𝐺 ‘ 𝑥 ) − 0 ) ) < ( 𝑦 / ( ( abs ‘ 𝑚 ) + 1 ) ) ) ) → ( if ( 𝑎 ≤ 𝑏 , 𝑏 , 𝑎 ) ≤ 𝑥 → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) ) < 𝑦 ) ) ) |
| 115 | 114 | anassrs | ⊢ ( ( ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ ) ) ∧ 𝑏 ∈ ℝ ) ∧ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) → ( ( ( 𝑎 ≤ 𝑥 ∧ 𝑏 ≤ 𝑥 ) → ( ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑚 ∧ ( abs ‘ ( ( 𝐺 ‘ 𝑥 ) − 0 ) ) < ( 𝑦 / ( ( abs ‘ 𝑚 ) + 1 ) ) ) ) → ( if ( 𝑎 ≤ 𝑏 , 𝑏 , 𝑎 ) ≤ 𝑥 → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) ) < 𝑦 ) ) ) |
| 116 | 115 | ralimdva | ⊢ ( ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ ) ) ∧ 𝑏 ∈ ℝ ) → ( ∀ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ( ( 𝑎 ≤ 𝑥 ∧ 𝑏 ≤ 𝑥 ) → ( ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑚 ∧ ( abs ‘ ( ( 𝐺 ‘ 𝑥 ) − 0 ) ) < ( 𝑦 / ( ( abs ‘ 𝑚 ) + 1 ) ) ) ) → ∀ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ( if ( 𝑎 ≤ 𝑏 , 𝑏 , 𝑎 ) ≤ 𝑥 → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) ) < 𝑦 ) ) ) |
| 117 | simpr | ⊢ ( ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ ) ) ∧ 𝑏 ∈ ℝ ) → 𝑏 ∈ ℝ ) | |
| 118 | simplrl | ⊢ ( ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ ) ) ∧ 𝑏 ∈ ℝ ) → 𝑎 ∈ ℝ ) | |
| 119 | 117 118 | ifcld | ⊢ ( ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ ) ) ∧ 𝑏 ∈ ℝ ) → if ( 𝑎 ≤ 𝑏 , 𝑏 , 𝑎 ) ∈ ℝ ) |
| 120 | 116 119 | jctild | ⊢ ( ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ ) ) ∧ 𝑏 ∈ ℝ ) → ( ∀ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ( ( 𝑎 ≤ 𝑥 ∧ 𝑏 ≤ 𝑥 ) → ( ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑚 ∧ ( abs ‘ ( ( 𝐺 ‘ 𝑥 ) − 0 ) ) < ( 𝑦 / ( ( abs ‘ 𝑚 ) + 1 ) ) ) ) → ( if ( 𝑎 ≤ 𝑏 , 𝑏 , 𝑎 ) ∈ ℝ ∧ ∀ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ( if ( 𝑎 ≤ 𝑏 , 𝑏 , 𝑎 ) ≤ 𝑥 → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) ) < 𝑦 ) ) ) ) |
| 121 | breq1 | ⊢ ( 𝑧 = if ( 𝑎 ≤ 𝑏 , 𝑏 , 𝑎 ) → ( 𝑧 ≤ 𝑥 ↔ if ( 𝑎 ≤ 𝑏 , 𝑏 , 𝑎 ) ≤ 𝑥 ) ) | |
| 122 | 121 | rspceaimv | ⊢ ( ( if ( 𝑎 ≤ 𝑏 , 𝑏 , 𝑎 ) ∈ ℝ ∧ ∀ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ( if ( 𝑎 ≤ 𝑏 , 𝑏 , 𝑎 ) ≤ 𝑥 → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) ) < 𝑦 ) ) → ∃ 𝑧 ∈ ℝ ∀ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ( 𝑧 ≤ 𝑥 → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) ) < 𝑦 ) ) |
| 123 | 48 120 122 | syl56 | ⊢ ( ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ ) ) ∧ 𝑏 ∈ ℝ ) → ( ( ∀ 𝑥 ∈ dom 𝐹 ( 𝑎 ≤ 𝑥 → ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑚 ) ∧ ∀ 𝑥 ∈ dom 𝐺 ( 𝑏 ≤ 𝑥 → ( abs ‘ ( ( 𝐺 ‘ 𝑥 ) − 0 ) ) < ( 𝑦 / ( ( abs ‘ 𝑚 ) + 1 ) ) ) ) → ∃ 𝑧 ∈ ℝ ∀ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ( 𝑧 ≤ 𝑥 → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) ) < 𝑦 ) ) ) |
| 124 | 123 | expcomd | ⊢ ( ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ ) ) ∧ 𝑏 ∈ ℝ ) → ( ∀ 𝑥 ∈ dom 𝐺 ( 𝑏 ≤ 𝑥 → ( abs ‘ ( ( 𝐺 ‘ 𝑥 ) − 0 ) ) < ( 𝑦 / ( ( abs ‘ 𝑚 ) + 1 ) ) ) → ( ∀ 𝑥 ∈ dom 𝐹 ( 𝑎 ≤ 𝑥 → ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑚 ) → ∃ 𝑧 ∈ ℝ ∀ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ( 𝑧 ≤ 𝑥 → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) ) < 𝑦 ) ) ) ) |
| 125 | 124 | rexlimdva | ⊢ ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ ) ) → ( ∃ 𝑏 ∈ ℝ ∀ 𝑥 ∈ dom 𝐺 ( 𝑏 ≤ 𝑥 → ( abs ‘ ( ( 𝐺 ‘ 𝑥 ) − 0 ) ) < ( 𝑦 / ( ( abs ‘ 𝑚 ) + 1 ) ) ) → ( ∀ 𝑥 ∈ dom 𝐹 ( 𝑎 ≤ 𝑥 → ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑚 ) → ∃ 𝑧 ∈ ℝ ∀ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ( 𝑧 ≤ 𝑥 → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) ) < 𝑦 ) ) ) ) |
| 126 | 36 125 | mpd | ⊢ ( ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) ∧ 𝑦 ∈ ℝ+ ) ∧ ( 𝑎 ∈ ℝ ∧ 𝑚 ∈ ℝ ) ) → ( ∀ 𝑥 ∈ dom 𝐹 ( 𝑎 ≤ 𝑥 → ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑚 ) → ∃ 𝑧 ∈ ℝ ∀ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ( 𝑧 ≤ 𝑥 → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) ) < 𝑦 ) ) ) |
| 127 | 126 | rexlimdvva | ⊢ ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) ∧ 𝑦 ∈ ℝ+ ) → ( ∃ 𝑎 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑥 ∈ dom 𝐹 ( 𝑎 ≤ 𝑥 → ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑚 ) → ∃ 𝑧 ∈ ℝ ∀ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ( 𝑧 ≤ 𝑥 → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) ) < 𝑦 ) ) ) |
| 128 | 22 127 | mpd | ⊢ ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) ∧ 𝑦 ∈ ℝ+ ) → ∃ 𝑧 ∈ ℝ ∀ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ( 𝑧 ≤ 𝑥 → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) ) < 𝑦 ) ) |
| 129 | 128 | ralrimiva | ⊢ ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) → ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ ∀ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ( 𝑧 ≤ 𝑥 → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) ) < 𝑦 ) ) |
| 130 | ffvelcdm | ⊢ ( ( 𝐹 : dom 𝐹 ⟶ ℂ ∧ 𝑥 ∈ dom 𝐹 ) → ( 𝐹 ‘ 𝑥 ) ∈ ℂ ) | |
| 131 | 2 73 130 | syl2an | ⊢ ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) ∧ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ℂ ) |
| 132 | ffvelcdm | ⊢ ( ( 𝐺 : dom 𝐺 ⟶ ℂ ∧ 𝑥 ∈ dom 𝐺 ) → ( 𝐺 ‘ 𝑥 ) ∈ ℂ ) | |
| 133 | 5 59 132 | syl2an | ⊢ ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) ∧ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) → ( 𝐺 ‘ 𝑥 ) ∈ ℂ ) |
| 134 | 131 133 | mulcld | ⊢ ( ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) ∧ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ) → ( ( 𝐹 ‘ 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) ∈ ℂ ) |
| 135 | 134 | ralrimiva | ⊢ ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) → ∀ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ( ( 𝐹 ‘ 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) ∈ ℂ ) |
| 136 | 135 51 | rlim0 | ⊢ ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) → ( ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ( 𝐹 ‘ 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) ) ⇝𝑟 0 ↔ ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ ∀ 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ( 𝑧 ≤ 𝑥 → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) ) < 𝑦 ) ) ) |
| 137 | 129 136 | mpbird | ⊢ ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) → ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ( 𝐹 ‘ 𝑥 ) · ( 𝐺 ‘ 𝑥 ) ) ) ⇝𝑟 0 ) |
| 138 | 19 137 | eqbrtrd | ⊢ ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐺 ⇝𝑟 0 ) → ( 𝐹 ∘f · 𝐺 ) ⇝𝑟 0 ) |