This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Comparison of product of two nonnegative numbers. (Contributed by NM, 22-Feb-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lemul12a | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 𝐵 ∈ ℝ ) ∧ ( ( 𝐶 ∈ ℝ ∧ 0 ≤ 𝐶 ) ∧ 𝐷 ∈ ℝ ) ) → ( ( 𝐴 ≤ 𝐵 ∧ 𝐶 ≤ 𝐷 ) → ( 𝐴 · 𝐶 ) ≤ ( 𝐵 · 𝐷 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpll | ⊢ ( ( ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 𝐵 ∈ ℝ ) ∧ ( ( 𝐶 ∈ ℝ ∧ 0 ≤ 𝐶 ) ∧ 𝐷 ∈ ℝ ) ) ∧ ( 𝐴 ≤ 𝐵 ∧ 𝐶 ≤ 𝐷 ) ) → ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 𝐵 ∈ ℝ ) ) | |
| 2 | simpll | ⊢ ( ( ( 𝐶 ∈ ℝ ∧ 0 ≤ 𝐶 ) ∧ 𝐷 ∈ ℝ ) → 𝐶 ∈ ℝ ) | |
| 3 | 2 | ad2antlr | ⊢ ( ( ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 𝐵 ∈ ℝ ) ∧ ( ( 𝐶 ∈ ℝ ∧ 0 ≤ 𝐶 ) ∧ 𝐷 ∈ ℝ ) ) ∧ ( 𝐴 ≤ 𝐵 ∧ 𝐶 ≤ 𝐷 ) ) → 𝐶 ∈ ℝ ) |
| 4 | simplrr | ⊢ ( ( ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 𝐵 ∈ ℝ ) ∧ ( ( 𝐶 ∈ ℝ ∧ 0 ≤ 𝐶 ) ∧ 𝐷 ∈ ℝ ) ) ∧ ( 𝐴 ≤ 𝐵 ∧ 𝐶 ≤ 𝐷 ) ) → 𝐷 ∈ ℝ ) | |
| 5 | 0re | ⊢ 0 ∈ ℝ | |
| 6 | letr | ⊢ ( ( 0 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) → ( ( 0 ≤ 𝐶 ∧ 𝐶 ≤ 𝐷 ) → 0 ≤ 𝐷 ) ) | |
| 7 | 5 6 | mp3an1 | ⊢ ( ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) → ( ( 0 ≤ 𝐶 ∧ 𝐶 ≤ 𝐷 ) → 0 ≤ 𝐷 ) ) |
| 8 | 7 | exp4b | ⊢ ( 𝐶 ∈ ℝ → ( 𝐷 ∈ ℝ → ( 0 ≤ 𝐶 → ( 𝐶 ≤ 𝐷 → 0 ≤ 𝐷 ) ) ) ) |
| 9 | 8 | com23 | ⊢ ( 𝐶 ∈ ℝ → ( 0 ≤ 𝐶 → ( 𝐷 ∈ ℝ → ( 𝐶 ≤ 𝐷 → 0 ≤ 𝐷 ) ) ) ) |
| 10 | 9 | imp41 | ⊢ ( ( ( ( 𝐶 ∈ ℝ ∧ 0 ≤ 𝐶 ) ∧ 𝐷 ∈ ℝ ) ∧ 𝐶 ≤ 𝐷 ) → 0 ≤ 𝐷 ) |
| 11 | 10 | ad2ant2l | ⊢ ( ( ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 𝐵 ∈ ℝ ) ∧ ( ( 𝐶 ∈ ℝ ∧ 0 ≤ 𝐶 ) ∧ 𝐷 ∈ ℝ ) ) ∧ ( 𝐴 ≤ 𝐵 ∧ 𝐶 ≤ 𝐷 ) ) → 0 ≤ 𝐷 ) |
| 12 | 4 11 | jca | ⊢ ( ( ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 𝐵 ∈ ℝ ) ∧ ( ( 𝐶 ∈ ℝ ∧ 0 ≤ 𝐶 ) ∧ 𝐷 ∈ ℝ ) ) ∧ ( 𝐴 ≤ 𝐵 ∧ 𝐶 ≤ 𝐷 ) ) → ( 𝐷 ∈ ℝ ∧ 0 ≤ 𝐷 ) ) |
| 13 | 1 3 12 | jca32 | ⊢ ( ( ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 𝐵 ∈ ℝ ) ∧ ( ( 𝐶 ∈ ℝ ∧ 0 ≤ 𝐶 ) ∧ 𝐷 ∈ ℝ ) ) ∧ ( 𝐴 ≤ 𝐵 ∧ 𝐶 ≤ 𝐷 ) ) → ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ ( 𝐷 ∈ ℝ ∧ 0 ≤ 𝐷 ) ) ) ) |
| 14 | simpr | ⊢ ( ( ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 𝐵 ∈ ℝ ) ∧ ( ( 𝐶 ∈ ℝ ∧ 0 ≤ 𝐶 ) ∧ 𝐷 ∈ ℝ ) ) ∧ ( 𝐴 ≤ 𝐵 ∧ 𝐶 ≤ 𝐷 ) ) → ( 𝐴 ≤ 𝐵 ∧ 𝐶 ≤ 𝐷 ) ) | |
| 15 | lemul12b | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ ( 𝐷 ∈ ℝ ∧ 0 ≤ 𝐷 ) ) ) → ( ( 𝐴 ≤ 𝐵 ∧ 𝐶 ≤ 𝐷 ) → ( 𝐴 · 𝐶 ) ≤ ( 𝐵 · 𝐷 ) ) ) | |
| 16 | 13 14 15 | sylc | ⊢ ( ( ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 𝐵 ∈ ℝ ) ∧ ( ( 𝐶 ∈ ℝ ∧ 0 ≤ 𝐶 ) ∧ 𝐷 ∈ ℝ ) ) ∧ ( 𝐴 ≤ 𝐵 ∧ 𝐶 ≤ 𝐷 ) ) → ( 𝐴 · 𝐶 ) ≤ ( 𝐵 · 𝐷 ) ) |
| 17 | 16 | ex | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 𝐵 ∈ ℝ ) ∧ ( ( 𝐶 ∈ ℝ ∧ 0 ≤ 𝐶 ) ∧ 𝐷 ∈ ℝ ) ) → ( ( 𝐴 ≤ 𝐵 ∧ 𝐶 ≤ 𝐷 ) → ( 𝐴 · 𝐶 ) ≤ ( 𝐵 · 𝐷 ) ) ) |