This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The product of an eventually bounded function and a function of limit zero has limit zero. (Contributed by Mario Carneiro, 18-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | o1rlimmul | |- ( ( F e. O(1) /\ G ~~>r 0 ) -> ( F oF x. G ) ~~>r 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | o1f | |- ( F e. O(1) -> F : dom F --> CC ) |
|
| 2 | 1 | adantr | |- ( ( F e. O(1) /\ G ~~>r 0 ) -> F : dom F --> CC ) |
| 3 | 2 | ffnd | |- ( ( F e. O(1) /\ G ~~>r 0 ) -> F Fn dom F ) |
| 4 | rlimf | |- ( G ~~>r 0 -> G : dom G --> CC ) |
|
| 5 | 4 | adantl | |- ( ( F e. O(1) /\ G ~~>r 0 ) -> G : dom G --> CC ) |
| 6 | 5 | ffnd | |- ( ( F e. O(1) /\ G ~~>r 0 ) -> G Fn dom G ) |
| 7 | o1dm | |- ( F e. O(1) -> dom F C_ RR ) |
|
| 8 | 7 | adantr | |- ( ( F e. O(1) /\ G ~~>r 0 ) -> dom F C_ RR ) |
| 9 | reex | |- RR e. _V |
|
| 10 | ssexg | |- ( ( dom F C_ RR /\ RR e. _V ) -> dom F e. _V ) |
|
| 11 | 8 9 10 | sylancl | |- ( ( F e. O(1) /\ G ~~>r 0 ) -> dom F e. _V ) |
| 12 | rlimss | |- ( G ~~>r 0 -> dom G C_ RR ) |
|
| 13 | 12 | adantl | |- ( ( F e. O(1) /\ G ~~>r 0 ) -> dom G C_ RR ) |
| 14 | ssexg | |- ( ( dom G C_ RR /\ RR e. _V ) -> dom G e. _V ) |
|
| 15 | 13 9 14 | sylancl | |- ( ( F e. O(1) /\ G ~~>r 0 ) -> dom G e. _V ) |
| 16 | eqid | |- ( dom F i^i dom G ) = ( dom F i^i dom G ) |
|
| 17 | eqidd | |- ( ( ( F e. O(1) /\ G ~~>r 0 ) /\ x e. dom F ) -> ( F ` x ) = ( F ` x ) ) |
|
| 18 | eqidd | |- ( ( ( F e. O(1) /\ G ~~>r 0 ) /\ x e. dom G ) -> ( G ` x ) = ( G ` x ) ) |
|
| 19 | 3 6 11 15 16 17 18 | offval | |- ( ( F e. O(1) /\ G ~~>r 0 ) -> ( F oF x. G ) = ( x e. ( dom F i^i dom G ) |-> ( ( F ` x ) x. ( G ` x ) ) ) ) |
| 20 | o1bdd | |- ( ( F e. O(1) /\ F : dom F --> CC ) -> E. a e. RR E. m e. RR A. x e. dom F ( a <_ x -> ( abs ` ( F ` x ) ) <_ m ) ) |
|
| 21 | 1 20 | mpdan | |- ( F e. O(1) -> E. a e. RR E. m e. RR A. x e. dom F ( a <_ x -> ( abs ` ( F ` x ) ) <_ m ) ) |
| 22 | 21 | ad2antrr | |- ( ( ( F e. O(1) /\ G ~~>r 0 ) /\ y e. RR+ ) -> E. a e. RR E. m e. RR A. x e. dom F ( a <_ x -> ( abs ` ( F ` x ) ) <_ m ) ) |
| 23 | fvexd | |- ( ( ( ( ( F e. O(1) /\ G ~~>r 0 ) /\ y e. RR+ ) /\ ( a e. RR /\ m e. RR ) ) /\ x e. dom G ) -> ( G ` x ) e. _V ) |
|
| 24 | 23 | ralrimiva | |- ( ( ( ( F e. O(1) /\ G ~~>r 0 ) /\ y e. RR+ ) /\ ( a e. RR /\ m e. RR ) ) -> A. x e. dom G ( G ` x ) e. _V ) |
| 25 | simplr | |- ( ( ( ( F e. O(1) /\ G ~~>r 0 ) /\ y e. RR+ ) /\ ( a e. RR /\ m e. RR ) ) -> y e. RR+ ) |
|
| 26 | recn | |- ( m e. RR -> m e. CC ) |
|
| 27 | 26 | ad2antll | |- ( ( ( ( F e. O(1) /\ G ~~>r 0 ) /\ y e. RR+ ) /\ ( a e. RR /\ m e. RR ) ) -> m e. CC ) |
| 28 | 27 | abscld | |- ( ( ( ( F e. O(1) /\ G ~~>r 0 ) /\ y e. RR+ ) /\ ( a e. RR /\ m e. RR ) ) -> ( abs ` m ) e. RR ) |
| 29 | 27 | absge0d | |- ( ( ( ( F e. O(1) /\ G ~~>r 0 ) /\ y e. RR+ ) /\ ( a e. RR /\ m e. RR ) ) -> 0 <_ ( abs ` m ) ) |
| 30 | 28 29 | ge0p1rpd | |- ( ( ( ( F e. O(1) /\ G ~~>r 0 ) /\ y e. RR+ ) /\ ( a e. RR /\ m e. RR ) ) -> ( ( abs ` m ) + 1 ) e. RR+ ) |
| 31 | 25 30 | rpdivcld | |- ( ( ( ( F e. O(1) /\ G ~~>r 0 ) /\ y e. RR+ ) /\ ( a e. RR /\ m e. RR ) ) -> ( y / ( ( abs ` m ) + 1 ) ) e. RR+ ) |
| 32 | 5 | feqmptd | |- ( ( F e. O(1) /\ G ~~>r 0 ) -> G = ( x e. dom G |-> ( G ` x ) ) ) |
| 33 | simpr | |- ( ( F e. O(1) /\ G ~~>r 0 ) -> G ~~>r 0 ) |
|
| 34 | 32 33 | eqbrtrrd | |- ( ( F e. O(1) /\ G ~~>r 0 ) -> ( x e. dom G |-> ( G ` x ) ) ~~>r 0 ) |
| 35 | 34 | ad2antrr | |- ( ( ( ( F e. O(1) /\ G ~~>r 0 ) /\ y e. RR+ ) /\ ( a e. RR /\ m e. RR ) ) -> ( x e. dom G |-> ( G ` x ) ) ~~>r 0 ) |
| 36 | 24 31 35 | rlimi | |- ( ( ( ( F e. O(1) /\ G ~~>r 0 ) /\ y e. RR+ ) /\ ( a e. RR /\ m e. RR ) ) -> E. b e. RR A. x e. dom G ( b <_ x -> ( abs ` ( ( G ` x ) - 0 ) ) < ( y / ( ( abs ` m ) + 1 ) ) ) ) |
| 37 | inss1 | |- ( dom F i^i dom G ) C_ dom F |
|
| 38 | ssralv | |- ( ( dom F i^i dom G ) C_ dom F -> ( A. x e. dom F ( a <_ x -> ( abs ` ( F ` x ) ) <_ m ) -> A. x e. ( dom F i^i dom G ) ( a <_ x -> ( abs ` ( F ` x ) ) <_ m ) ) ) |
|
| 39 | 37 38 | ax-mp | |- ( A. x e. dom F ( a <_ x -> ( abs ` ( F ` x ) ) <_ m ) -> A. x e. ( dom F i^i dom G ) ( a <_ x -> ( abs ` ( F ` x ) ) <_ m ) ) |
| 40 | inss2 | |- ( dom F i^i dom G ) C_ dom G |
|
| 41 | ssralv | |- ( ( dom F i^i dom G ) C_ dom G -> ( A. x e. dom G ( b <_ x -> ( abs ` ( ( G ` x ) - 0 ) ) < ( y / ( ( abs ` m ) + 1 ) ) ) -> A. x e. ( dom F i^i dom G ) ( b <_ x -> ( abs ` ( ( G ` x ) - 0 ) ) < ( y / ( ( abs ` m ) + 1 ) ) ) ) ) |
|
| 42 | 40 41 | ax-mp | |- ( A. x e. dom G ( b <_ x -> ( abs ` ( ( G ` x ) - 0 ) ) < ( y / ( ( abs ` m ) + 1 ) ) ) -> A. x e. ( dom F i^i dom G ) ( b <_ x -> ( abs ` ( ( G ` x ) - 0 ) ) < ( y / ( ( abs ` m ) + 1 ) ) ) ) |
| 43 | 39 42 | anim12i | |- ( ( A. x e. dom F ( a <_ x -> ( abs ` ( F ` x ) ) <_ m ) /\ A. x e. dom G ( b <_ x -> ( abs ` ( ( G ` x ) - 0 ) ) < ( y / ( ( abs ` m ) + 1 ) ) ) ) -> ( A. x e. ( dom F i^i dom G ) ( a <_ x -> ( abs ` ( F ` x ) ) <_ m ) /\ A. x e. ( dom F i^i dom G ) ( b <_ x -> ( abs ` ( ( G ` x ) - 0 ) ) < ( y / ( ( abs ` m ) + 1 ) ) ) ) ) |
| 44 | r19.26 | |- ( A. x e. ( dom F i^i dom G ) ( ( a <_ x -> ( abs ` ( F ` x ) ) <_ m ) /\ ( b <_ x -> ( abs ` ( ( G ` x ) - 0 ) ) < ( y / ( ( abs ` m ) + 1 ) ) ) ) <-> ( A. x e. ( dom F i^i dom G ) ( a <_ x -> ( abs ` ( F ` x ) ) <_ m ) /\ A. x e. ( dom F i^i dom G ) ( b <_ x -> ( abs ` ( ( G ` x ) - 0 ) ) < ( y / ( ( abs ` m ) + 1 ) ) ) ) ) |
|
| 45 | 43 44 | sylibr | |- ( ( A. x e. dom F ( a <_ x -> ( abs ` ( F ` x ) ) <_ m ) /\ A. x e. dom G ( b <_ x -> ( abs ` ( ( G ` x ) - 0 ) ) < ( y / ( ( abs ` m ) + 1 ) ) ) ) -> A. x e. ( dom F i^i dom G ) ( ( a <_ x -> ( abs ` ( F ` x ) ) <_ m ) /\ ( b <_ x -> ( abs ` ( ( G ` x ) - 0 ) ) < ( y / ( ( abs ` m ) + 1 ) ) ) ) ) |
| 46 | anim12 | |- ( ( ( a <_ x -> ( abs ` ( F ` x ) ) <_ m ) /\ ( b <_ x -> ( abs ` ( ( G ` x ) - 0 ) ) < ( y / ( ( abs ` m ) + 1 ) ) ) ) -> ( ( a <_ x /\ b <_ x ) -> ( ( abs ` ( F ` x ) ) <_ m /\ ( abs ` ( ( G ` x ) - 0 ) ) < ( y / ( ( abs ` m ) + 1 ) ) ) ) ) |
|
| 47 | 46 | ralimi | |- ( A. x e. ( dom F i^i dom G ) ( ( a <_ x -> ( abs ` ( F ` x ) ) <_ m ) /\ ( b <_ x -> ( abs ` ( ( G ` x ) - 0 ) ) < ( y / ( ( abs ` m ) + 1 ) ) ) ) -> A. x e. ( dom F i^i dom G ) ( ( a <_ x /\ b <_ x ) -> ( ( abs ` ( F ` x ) ) <_ m /\ ( abs ` ( ( G ` x ) - 0 ) ) < ( y / ( ( abs ` m ) + 1 ) ) ) ) ) |
| 48 | 45 47 | syl | |- ( ( A. x e. dom F ( a <_ x -> ( abs ` ( F ` x ) ) <_ m ) /\ A. x e. dom G ( b <_ x -> ( abs ` ( ( G ` x ) - 0 ) ) < ( y / ( ( abs ` m ) + 1 ) ) ) ) -> A. x e. ( dom F i^i dom G ) ( ( a <_ x /\ b <_ x ) -> ( ( abs ` ( F ` x ) ) <_ m /\ ( abs ` ( ( G ` x ) - 0 ) ) < ( y / ( ( abs ` m ) + 1 ) ) ) ) ) |
| 49 | simplrl | |- ( ( ( ( ( F e. O(1) /\ G ~~>r 0 ) /\ y e. RR+ ) /\ ( a e. RR /\ m e. RR ) ) /\ ( b e. RR /\ x e. ( dom F i^i dom G ) ) ) -> a e. RR ) |
|
| 50 | simprl | |- ( ( ( ( ( F e. O(1) /\ G ~~>r 0 ) /\ y e. RR+ ) /\ ( a e. RR /\ m e. RR ) ) /\ ( b e. RR /\ x e. ( dom F i^i dom G ) ) ) -> b e. RR ) |
|
| 51 | 37 8 | sstrid | |- ( ( F e. O(1) /\ G ~~>r 0 ) -> ( dom F i^i dom G ) C_ RR ) |
| 52 | 51 | ad3antrrr | |- ( ( ( ( ( F e. O(1) /\ G ~~>r 0 ) /\ y e. RR+ ) /\ ( a e. RR /\ m e. RR ) ) /\ ( b e. RR /\ x e. ( dom F i^i dom G ) ) ) -> ( dom F i^i dom G ) C_ RR ) |
| 53 | simprr | |- ( ( ( ( ( F e. O(1) /\ G ~~>r 0 ) /\ y e. RR+ ) /\ ( a e. RR /\ m e. RR ) ) /\ ( b e. RR /\ x e. ( dom F i^i dom G ) ) ) -> x e. ( dom F i^i dom G ) ) |
|
| 54 | 52 53 | sseldd | |- ( ( ( ( ( F e. O(1) /\ G ~~>r 0 ) /\ y e. RR+ ) /\ ( a e. RR /\ m e. RR ) ) /\ ( b e. RR /\ x e. ( dom F i^i dom G ) ) ) -> x e. RR ) |
| 55 | maxle | |- ( ( a e. RR /\ b e. RR /\ x e. RR ) -> ( if ( a <_ b , b , a ) <_ x <-> ( a <_ x /\ b <_ x ) ) ) |
|
| 56 | 49 50 54 55 | syl3anc | |- ( ( ( ( ( F e. O(1) /\ G ~~>r 0 ) /\ y e. RR+ ) /\ ( a e. RR /\ m e. RR ) ) /\ ( b e. RR /\ x e. ( dom F i^i dom G ) ) ) -> ( if ( a <_ b , b , a ) <_ x <-> ( a <_ x /\ b <_ x ) ) ) |
| 57 | 56 | biimpd | |- ( ( ( ( ( F e. O(1) /\ G ~~>r 0 ) /\ y e. RR+ ) /\ ( a e. RR /\ m e. RR ) ) /\ ( b e. RR /\ x e. ( dom F i^i dom G ) ) ) -> ( if ( a <_ b , b , a ) <_ x -> ( a <_ x /\ b <_ x ) ) ) |
| 58 | 5 | ad3antrrr | |- ( ( ( ( ( F e. O(1) /\ G ~~>r 0 ) /\ y e. RR+ ) /\ ( a e. RR /\ m e. RR ) ) /\ ( b e. RR /\ x e. ( dom F i^i dom G ) ) ) -> G : dom G --> CC ) |
| 59 | 40 | sseli | |- ( x e. ( dom F i^i dom G ) -> x e. dom G ) |
| 60 | 59 | ad2antll | |- ( ( ( ( ( F e. O(1) /\ G ~~>r 0 ) /\ y e. RR+ ) /\ ( a e. RR /\ m e. RR ) ) /\ ( b e. RR /\ x e. ( dom F i^i dom G ) ) ) -> x e. dom G ) |
| 61 | 58 60 | ffvelcdmd | |- ( ( ( ( ( F e. O(1) /\ G ~~>r 0 ) /\ y e. RR+ ) /\ ( a e. RR /\ m e. RR ) ) /\ ( b e. RR /\ x e. ( dom F i^i dom G ) ) ) -> ( G ` x ) e. CC ) |
| 62 | 61 | subid1d | |- ( ( ( ( ( F e. O(1) /\ G ~~>r 0 ) /\ y e. RR+ ) /\ ( a e. RR /\ m e. RR ) ) /\ ( b e. RR /\ x e. ( dom F i^i dom G ) ) ) -> ( ( G ` x ) - 0 ) = ( G ` x ) ) |
| 63 | 62 | fveq2d | |- ( ( ( ( ( F e. O(1) /\ G ~~>r 0 ) /\ y e. RR+ ) /\ ( a e. RR /\ m e. RR ) ) /\ ( b e. RR /\ x e. ( dom F i^i dom G ) ) ) -> ( abs ` ( ( G ` x ) - 0 ) ) = ( abs ` ( G ` x ) ) ) |
| 64 | 63 | breq1d | |- ( ( ( ( ( F e. O(1) /\ G ~~>r 0 ) /\ y e. RR+ ) /\ ( a e. RR /\ m e. RR ) ) /\ ( b e. RR /\ x e. ( dom F i^i dom G ) ) ) -> ( ( abs ` ( ( G ` x ) - 0 ) ) < ( y / ( ( abs ` m ) + 1 ) ) <-> ( abs ` ( G ` x ) ) < ( y / ( ( abs ` m ) + 1 ) ) ) ) |
| 65 | 61 | abscld | |- ( ( ( ( ( F e. O(1) /\ G ~~>r 0 ) /\ y e. RR+ ) /\ ( a e. RR /\ m e. RR ) ) /\ ( b e. RR /\ x e. ( dom F i^i dom G ) ) ) -> ( abs ` ( G ` x ) ) e. RR ) |
| 66 | 31 | adantr | |- ( ( ( ( ( F e. O(1) /\ G ~~>r 0 ) /\ y e. RR+ ) /\ ( a e. RR /\ m e. RR ) ) /\ ( b e. RR /\ x e. ( dom F i^i dom G ) ) ) -> ( y / ( ( abs ` m ) + 1 ) ) e. RR+ ) |
| 67 | 66 | rpred | |- ( ( ( ( ( F e. O(1) /\ G ~~>r 0 ) /\ y e. RR+ ) /\ ( a e. RR /\ m e. RR ) ) /\ ( b e. RR /\ x e. ( dom F i^i dom G ) ) ) -> ( y / ( ( abs ` m ) + 1 ) ) e. RR ) |
| 68 | ltle | |- ( ( ( abs ` ( G ` x ) ) e. RR /\ ( y / ( ( abs ` m ) + 1 ) ) e. RR ) -> ( ( abs ` ( G ` x ) ) < ( y / ( ( abs ` m ) + 1 ) ) -> ( abs ` ( G ` x ) ) <_ ( y / ( ( abs ` m ) + 1 ) ) ) ) |
|
| 69 | 65 67 68 | syl2anc | |- ( ( ( ( ( F e. O(1) /\ G ~~>r 0 ) /\ y e. RR+ ) /\ ( a e. RR /\ m e. RR ) ) /\ ( b e. RR /\ x e. ( dom F i^i dom G ) ) ) -> ( ( abs ` ( G ` x ) ) < ( y / ( ( abs ` m ) + 1 ) ) -> ( abs ` ( G ` x ) ) <_ ( y / ( ( abs ` m ) + 1 ) ) ) ) |
| 70 | 64 69 | sylbid | |- ( ( ( ( ( F e. O(1) /\ G ~~>r 0 ) /\ y e. RR+ ) /\ ( a e. RR /\ m e. RR ) ) /\ ( b e. RR /\ x e. ( dom F i^i dom G ) ) ) -> ( ( abs ` ( ( G ` x ) - 0 ) ) < ( y / ( ( abs ` m ) + 1 ) ) -> ( abs ` ( G ` x ) ) <_ ( y / ( ( abs ` m ) + 1 ) ) ) ) |
| 71 | 70 | anim2d | |- ( ( ( ( ( F e. O(1) /\ G ~~>r 0 ) /\ y e. RR+ ) /\ ( a e. RR /\ m e. RR ) ) /\ ( b e. RR /\ x e. ( dom F i^i dom G ) ) ) -> ( ( ( abs ` ( F ` x ) ) <_ m /\ ( abs ` ( ( G ` x ) - 0 ) ) < ( y / ( ( abs ` m ) + 1 ) ) ) -> ( ( abs ` ( F ` x ) ) <_ m /\ ( abs ` ( G ` x ) ) <_ ( y / ( ( abs ` m ) + 1 ) ) ) ) ) |
| 72 | 2 | ad3antrrr | |- ( ( ( ( ( F e. O(1) /\ G ~~>r 0 ) /\ y e. RR+ ) /\ ( a e. RR /\ m e. RR ) ) /\ ( b e. RR /\ x e. ( dom F i^i dom G ) ) ) -> F : dom F --> CC ) |
| 73 | 37 | sseli | |- ( x e. ( dom F i^i dom G ) -> x e. dom F ) |
| 74 | 73 | ad2antll | |- ( ( ( ( ( F e. O(1) /\ G ~~>r 0 ) /\ y e. RR+ ) /\ ( a e. RR /\ m e. RR ) ) /\ ( b e. RR /\ x e. ( dom F i^i dom G ) ) ) -> x e. dom F ) |
| 75 | 72 74 | ffvelcdmd | |- ( ( ( ( ( F e. O(1) /\ G ~~>r 0 ) /\ y e. RR+ ) /\ ( a e. RR /\ m e. RR ) ) /\ ( b e. RR /\ x e. ( dom F i^i dom G ) ) ) -> ( F ` x ) e. CC ) |
| 76 | 75 | abscld | |- ( ( ( ( ( F e. O(1) /\ G ~~>r 0 ) /\ y e. RR+ ) /\ ( a e. RR /\ m e. RR ) ) /\ ( b e. RR /\ x e. ( dom F i^i dom G ) ) ) -> ( abs ` ( F ` x ) ) e. RR ) |
| 77 | 75 | absge0d | |- ( ( ( ( ( F e. O(1) /\ G ~~>r 0 ) /\ y e. RR+ ) /\ ( a e. RR /\ m e. RR ) ) /\ ( b e. RR /\ x e. ( dom F i^i dom G ) ) ) -> 0 <_ ( abs ` ( F ` x ) ) ) |
| 78 | 76 77 | jca | |- ( ( ( ( ( F e. O(1) /\ G ~~>r 0 ) /\ y e. RR+ ) /\ ( a e. RR /\ m e. RR ) ) /\ ( b e. RR /\ x e. ( dom F i^i dom G ) ) ) -> ( ( abs ` ( F ` x ) ) e. RR /\ 0 <_ ( abs ` ( F ` x ) ) ) ) |
| 79 | simplrr | |- ( ( ( ( ( F e. O(1) /\ G ~~>r 0 ) /\ y e. RR+ ) /\ ( a e. RR /\ m e. RR ) ) /\ ( b e. RR /\ x e. ( dom F i^i dom G ) ) ) -> m e. RR ) |
|
| 80 | 61 | absge0d | |- ( ( ( ( ( F e. O(1) /\ G ~~>r 0 ) /\ y e. RR+ ) /\ ( a e. RR /\ m e. RR ) ) /\ ( b e. RR /\ x e. ( dom F i^i dom G ) ) ) -> 0 <_ ( abs ` ( G ` x ) ) ) |
| 81 | 65 80 | jca | |- ( ( ( ( ( F e. O(1) /\ G ~~>r 0 ) /\ y e. RR+ ) /\ ( a e. RR /\ m e. RR ) ) /\ ( b e. RR /\ x e. ( dom F i^i dom G ) ) ) -> ( ( abs ` ( G ` x ) ) e. RR /\ 0 <_ ( abs ` ( G ` x ) ) ) ) |
| 82 | lemul12a | |- ( ( ( ( ( abs ` ( F ` x ) ) e. RR /\ 0 <_ ( abs ` ( F ` x ) ) ) /\ m e. RR ) /\ ( ( ( abs ` ( G ` x ) ) e. RR /\ 0 <_ ( abs ` ( G ` x ) ) ) /\ ( y / ( ( abs ` m ) + 1 ) ) e. RR ) ) -> ( ( ( abs ` ( F ` x ) ) <_ m /\ ( abs ` ( G ` x ) ) <_ ( y / ( ( abs ` m ) + 1 ) ) ) -> ( ( abs ` ( F ` x ) ) x. ( abs ` ( G ` x ) ) ) <_ ( m x. ( y / ( ( abs ` m ) + 1 ) ) ) ) ) |
|
| 83 | 78 79 81 67 82 | syl22anc | |- ( ( ( ( ( F e. O(1) /\ G ~~>r 0 ) /\ y e. RR+ ) /\ ( a e. RR /\ m e. RR ) ) /\ ( b e. RR /\ x e. ( dom F i^i dom G ) ) ) -> ( ( ( abs ` ( F ` x ) ) <_ m /\ ( abs ` ( G ` x ) ) <_ ( y / ( ( abs ` m ) + 1 ) ) ) -> ( ( abs ` ( F ` x ) ) x. ( abs ` ( G ` x ) ) ) <_ ( m x. ( y / ( ( abs ` m ) + 1 ) ) ) ) ) |
| 84 | 75 61 | absmuld | |- ( ( ( ( ( F e. O(1) /\ G ~~>r 0 ) /\ y e. RR+ ) /\ ( a e. RR /\ m e. RR ) ) /\ ( b e. RR /\ x e. ( dom F i^i dom G ) ) ) -> ( abs ` ( ( F ` x ) x. ( G ` x ) ) ) = ( ( abs ` ( F ` x ) ) x. ( abs ` ( G ` x ) ) ) ) |
| 85 | 84 | breq1d | |- ( ( ( ( ( F e. O(1) /\ G ~~>r 0 ) /\ y e. RR+ ) /\ ( a e. RR /\ m e. RR ) ) /\ ( b e. RR /\ x e. ( dom F i^i dom G ) ) ) -> ( ( abs ` ( ( F ` x ) x. ( G ` x ) ) ) <_ ( m x. ( y / ( ( abs ` m ) + 1 ) ) ) <-> ( ( abs ` ( F ` x ) ) x. ( abs ` ( G ` x ) ) ) <_ ( m x. ( y / ( ( abs ` m ) + 1 ) ) ) ) ) |
| 86 | 79 | recnd | |- ( ( ( ( ( F e. O(1) /\ G ~~>r 0 ) /\ y e. RR+ ) /\ ( a e. RR /\ m e. RR ) ) /\ ( b e. RR /\ x e. ( dom F i^i dom G ) ) ) -> m e. CC ) |
| 87 | 25 | adantr | |- ( ( ( ( ( F e. O(1) /\ G ~~>r 0 ) /\ y e. RR+ ) /\ ( a e. RR /\ m e. RR ) ) /\ ( b e. RR /\ x e. ( dom F i^i dom G ) ) ) -> y e. RR+ ) |
| 88 | 87 | rpcnd | |- ( ( ( ( ( F e. O(1) /\ G ~~>r 0 ) /\ y e. RR+ ) /\ ( a e. RR /\ m e. RR ) ) /\ ( b e. RR /\ x e. ( dom F i^i dom G ) ) ) -> y e. CC ) |
| 89 | 30 | adantr | |- ( ( ( ( ( F e. O(1) /\ G ~~>r 0 ) /\ y e. RR+ ) /\ ( a e. RR /\ m e. RR ) ) /\ ( b e. RR /\ x e. ( dom F i^i dom G ) ) ) -> ( ( abs ` m ) + 1 ) e. RR+ ) |
| 90 | 89 | rpcnd | |- ( ( ( ( ( F e. O(1) /\ G ~~>r 0 ) /\ y e. RR+ ) /\ ( a e. RR /\ m e. RR ) ) /\ ( b e. RR /\ x e. ( dom F i^i dom G ) ) ) -> ( ( abs ` m ) + 1 ) e. CC ) |
| 91 | 89 | rpne0d | |- ( ( ( ( ( F e. O(1) /\ G ~~>r 0 ) /\ y e. RR+ ) /\ ( a e. RR /\ m e. RR ) ) /\ ( b e. RR /\ x e. ( dom F i^i dom G ) ) ) -> ( ( abs ` m ) + 1 ) =/= 0 ) |
| 92 | 86 88 90 91 | divassd | |- ( ( ( ( ( F e. O(1) /\ G ~~>r 0 ) /\ y e. RR+ ) /\ ( a e. RR /\ m e. RR ) ) /\ ( b e. RR /\ x e. ( dom F i^i dom G ) ) ) -> ( ( m x. y ) / ( ( abs ` m ) + 1 ) ) = ( m x. ( y / ( ( abs ` m ) + 1 ) ) ) ) |
| 93 | peano2re | |- ( ( abs ` m ) e. RR -> ( ( abs ` m ) + 1 ) e. RR ) |
|
| 94 | 28 93 | syl | |- ( ( ( ( F e. O(1) /\ G ~~>r 0 ) /\ y e. RR+ ) /\ ( a e. RR /\ m e. RR ) ) -> ( ( abs ` m ) + 1 ) e. RR ) |
| 95 | 94 | adantr | |- ( ( ( ( ( F e. O(1) /\ G ~~>r 0 ) /\ y e. RR+ ) /\ ( a e. RR /\ m e. RR ) ) /\ ( b e. RR /\ x e. ( dom F i^i dom G ) ) ) -> ( ( abs ` m ) + 1 ) e. RR ) |
| 96 | 28 | adantr | |- ( ( ( ( ( F e. O(1) /\ G ~~>r 0 ) /\ y e. RR+ ) /\ ( a e. RR /\ m e. RR ) ) /\ ( b e. RR /\ x e. ( dom F i^i dom G ) ) ) -> ( abs ` m ) e. RR ) |
| 97 | 79 | leabsd | |- ( ( ( ( ( F e. O(1) /\ G ~~>r 0 ) /\ y e. RR+ ) /\ ( a e. RR /\ m e. RR ) ) /\ ( b e. RR /\ x e. ( dom F i^i dom G ) ) ) -> m <_ ( abs ` m ) ) |
| 98 | 96 | ltp1d | |- ( ( ( ( ( F e. O(1) /\ G ~~>r 0 ) /\ y e. RR+ ) /\ ( a e. RR /\ m e. RR ) ) /\ ( b e. RR /\ x e. ( dom F i^i dom G ) ) ) -> ( abs ` m ) < ( ( abs ` m ) + 1 ) ) |
| 99 | 79 96 95 97 98 | lelttrd | |- ( ( ( ( ( F e. O(1) /\ G ~~>r 0 ) /\ y e. RR+ ) /\ ( a e. RR /\ m e. RR ) ) /\ ( b e. RR /\ x e. ( dom F i^i dom G ) ) ) -> m < ( ( abs ` m ) + 1 ) ) |
| 100 | 79 95 87 99 | ltmul1dd | |- ( ( ( ( ( F e. O(1) /\ G ~~>r 0 ) /\ y e. RR+ ) /\ ( a e. RR /\ m e. RR ) ) /\ ( b e. RR /\ x e. ( dom F i^i dom G ) ) ) -> ( m x. y ) < ( ( ( abs ` m ) + 1 ) x. y ) ) |
| 101 | 87 | rpred | |- ( ( ( ( ( F e. O(1) /\ G ~~>r 0 ) /\ y e. RR+ ) /\ ( a e. RR /\ m e. RR ) ) /\ ( b e. RR /\ x e. ( dom F i^i dom G ) ) ) -> y e. RR ) |
| 102 | 79 101 | remulcld | |- ( ( ( ( ( F e. O(1) /\ G ~~>r 0 ) /\ y e. RR+ ) /\ ( a e. RR /\ m e. RR ) ) /\ ( b e. RR /\ x e. ( dom F i^i dom G ) ) ) -> ( m x. y ) e. RR ) |
| 103 | 102 101 89 | ltdivmuld | |- ( ( ( ( ( F e. O(1) /\ G ~~>r 0 ) /\ y e. RR+ ) /\ ( a e. RR /\ m e. RR ) ) /\ ( b e. RR /\ x e. ( dom F i^i dom G ) ) ) -> ( ( ( m x. y ) / ( ( abs ` m ) + 1 ) ) < y <-> ( m x. y ) < ( ( ( abs ` m ) + 1 ) x. y ) ) ) |
| 104 | 100 103 | mpbird | |- ( ( ( ( ( F e. O(1) /\ G ~~>r 0 ) /\ y e. RR+ ) /\ ( a e. RR /\ m e. RR ) ) /\ ( b e. RR /\ x e. ( dom F i^i dom G ) ) ) -> ( ( m x. y ) / ( ( abs ` m ) + 1 ) ) < y ) |
| 105 | 92 104 | eqbrtrrd | |- ( ( ( ( ( F e. O(1) /\ G ~~>r 0 ) /\ y e. RR+ ) /\ ( a e. RR /\ m e. RR ) ) /\ ( b e. RR /\ x e. ( dom F i^i dom G ) ) ) -> ( m x. ( y / ( ( abs ` m ) + 1 ) ) ) < y ) |
| 106 | 75 61 | mulcld | |- ( ( ( ( ( F e. O(1) /\ G ~~>r 0 ) /\ y e. RR+ ) /\ ( a e. RR /\ m e. RR ) ) /\ ( b e. RR /\ x e. ( dom F i^i dom G ) ) ) -> ( ( F ` x ) x. ( G ` x ) ) e. CC ) |
| 107 | 106 | abscld | |- ( ( ( ( ( F e. O(1) /\ G ~~>r 0 ) /\ y e. RR+ ) /\ ( a e. RR /\ m e. RR ) ) /\ ( b e. RR /\ x e. ( dom F i^i dom G ) ) ) -> ( abs ` ( ( F ` x ) x. ( G ` x ) ) ) e. RR ) |
| 108 | 79 67 | remulcld | |- ( ( ( ( ( F e. O(1) /\ G ~~>r 0 ) /\ y e. RR+ ) /\ ( a e. RR /\ m e. RR ) ) /\ ( b e. RR /\ x e. ( dom F i^i dom G ) ) ) -> ( m x. ( y / ( ( abs ` m ) + 1 ) ) ) e. RR ) |
| 109 | lelttr | |- ( ( ( abs ` ( ( F ` x ) x. ( G ` x ) ) ) e. RR /\ ( m x. ( y / ( ( abs ` m ) + 1 ) ) ) e. RR /\ y e. RR ) -> ( ( ( abs ` ( ( F ` x ) x. ( G ` x ) ) ) <_ ( m x. ( y / ( ( abs ` m ) + 1 ) ) ) /\ ( m x. ( y / ( ( abs ` m ) + 1 ) ) ) < y ) -> ( abs ` ( ( F ` x ) x. ( G ` x ) ) ) < y ) ) |
|
| 110 | 107 108 101 109 | syl3anc | |- ( ( ( ( ( F e. O(1) /\ G ~~>r 0 ) /\ y e. RR+ ) /\ ( a e. RR /\ m e. RR ) ) /\ ( b e. RR /\ x e. ( dom F i^i dom G ) ) ) -> ( ( ( abs ` ( ( F ` x ) x. ( G ` x ) ) ) <_ ( m x. ( y / ( ( abs ` m ) + 1 ) ) ) /\ ( m x. ( y / ( ( abs ` m ) + 1 ) ) ) < y ) -> ( abs ` ( ( F ` x ) x. ( G ` x ) ) ) < y ) ) |
| 111 | 105 110 | mpan2d | |- ( ( ( ( ( F e. O(1) /\ G ~~>r 0 ) /\ y e. RR+ ) /\ ( a e. RR /\ m e. RR ) ) /\ ( b e. RR /\ x e. ( dom F i^i dom G ) ) ) -> ( ( abs ` ( ( F ` x ) x. ( G ` x ) ) ) <_ ( m x. ( y / ( ( abs ` m ) + 1 ) ) ) -> ( abs ` ( ( F ` x ) x. ( G ` x ) ) ) < y ) ) |
| 112 | 85 111 | sylbird | |- ( ( ( ( ( F e. O(1) /\ G ~~>r 0 ) /\ y e. RR+ ) /\ ( a e. RR /\ m e. RR ) ) /\ ( b e. RR /\ x e. ( dom F i^i dom G ) ) ) -> ( ( ( abs ` ( F ` x ) ) x. ( abs ` ( G ` x ) ) ) <_ ( m x. ( y / ( ( abs ` m ) + 1 ) ) ) -> ( abs ` ( ( F ` x ) x. ( G ` x ) ) ) < y ) ) |
| 113 | 71 83 112 | 3syld | |- ( ( ( ( ( F e. O(1) /\ G ~~>r 0 ) /\ y e. RR+ ) /\ ( a e. RR /\ m e. RR ) ) /\ ( b e. RR /\ x e. ( dom F i^i dom G ) ) ) -> ( ( ( abs ` ( F ` x ) ) <_ m /\ ( abs ` ( ( G ` x ) - 0 ) ) < ( y / ( ( abs ` m ) + 1 ) ) ) -> ( abs ` ( ( F ` x ) x. ( G ` x ) ) ) < y ) ) |
| 114 | 57 113 | imim12d | |- ( ( ( ( ( F e. O(1) /\ G ~~>r 0 ) /\ y e. RR+ ) /\ ( a e. RR /\ m e. RR ) ) /\ ( b e. RR /\ x e. ( dom F i^i dom G ) ) ) -> ( ( ( a <_ x /\ b <_ x ) -> ( ( abs ` ( F ` x ) ) <_ m /\ ( abs ` ( ( G ` x ) - 0 ) ) < ( y / ( ( abs ` m ) + 1 ) ) ) ) -> ( if ( a <_ b , b , a ) <_ x -> ( abs ` ( ( F ` x ) x. ( G ` x ) ) ) < y ) ) ) |
| 115 | 114 | anassrs | |- ( ( ( ( ( ( F e. O(1) /\ G ~~>r 0 ) /\ y e. RR+ ) /\ ( a e. RR /\ m e. RR ) ) /\ b e. RR ) /\ x e. ( dom F i^i dom G ) ) -> ( ( ( a <_ x /\ b <_ x ) -> ( ( abs ` ( F ` x ) ) <_ m /\ ( abs ` ( ( G ` x ) - 0 ) ) < ( y / ( ( abs ` m ) + 1 ) ) ) ) -> ( if ( a <_ b , b , a ) <_ x -> ( abs ` ( ( F ` x ) x. ( G ` x ) ) ) < y ) ) ) |
| 116 | 115 | ralimdva | |- ( ( ( ( ( F e. O(1) /\ G ~~>r 0 ) /\ y e. RR+ ) /\ ( a e. RR /\ m e. RR ) ) /\ b e. RR ) -> ( A. x e. ( dom F i^i dom G ) ( ( a <_ x /\ b <_ x ) -> ( ( abs ` ( F ` x ) ) <_ m /\ ( abs ` ( ( G ` x ) - 0 ) ) < ( y / ( ( abs ` m ) + 1 ) ) ) ) -> A. x e. ( dom F i^i dom G ) ( if ( a <_ b , b , a ) <_ x -> ( abs ` ( ( F ` x ) x. ( G ` x ) ) ) < y ) ) ) |
| 117 | simpr | |- ( ( ( ( ( F e. O(1) /\ G ~~>r 0 ) /\ y e. RR+ ) /\ ( a e. RR /\ m e. RR ) ) /\ b e. RR ) -> b e. RR ) |
|
| 118 | simplrl | |- ( ( ( ( ( F e. O(1) /\ G ~~>r 0 ) /\ y e. RR+ ) /\ ( a e. RR /\ m e. RR ) ) /\ b e. RR ) -> a e. RR ) |
|
| 119 | 117 118 | ifcld | |- ( ( ( ( ( F e. O(1) /\ G ~~>r 0 ) /\ y e. RR+ ) /\ ( a e. RR /\ m e. RR ) ) /\ b e. RR ) -> if ( a <_ b , b , a ) e. RR ) |
| 120 | 116 119 | jctild | |- ( ( ( ( ( F e. O(1) /\ G ~~>r 0 ) /\ y e. RR+ ) /\ ( a e. RR /\ m e. RR ) ) /\ b e. RR ) -> ( A. x e. ( dom F i^i dom G ) ( ( a <_ x /\ b <_ x ) -> ( ( abs ` ( F ` x ) ) <_ m /\ ( abs ` ( ( G ` x ) - 0 ) ) < ( y / ( ( abs ` m ) + 1 ) ) ) ) -> ( if ( a <_ b , b , a ) e. RR /\ A. x e. ( dom F i^i dom G ) ( if ( a <_ b , b , a ) <_ x -> ( abs ` ( ( F ` x ) x. ( G ` x ) ) ) < y ) ) ) ) |
| 121 | breq1 | |- ( z = if ( a <_ b , b , a ) -> ( z <_ x <-> if ( a <_ b , b , a ) <_ x ) ) |
|
| 122 | 121 | rspceaimv | |- ( ( if ( a <_ b , b , a ) e. RR /\ A. x e. ( dom F i^i dom G ) ( if ( a <_ b , b , a ) <_ x -> ( abs ` ( ( F ` x ) x. ( G ` x ) ) ) < y ) ) -> E. z e. RR A. x e. ( dom F i^i dom G ) ( z <_ x -> ( abs ` ( ( F ` x ) x. ( G ` x ) ) ) < y ) ) |
| 123 | 48 120 122 | syl56 | |- ( ( ( ( ( F e. O(1) /\ G ~~>r 0 ) /\ y e. RR+ ) /\ ( a e. RR /\ m e. RR ) ) /\ b e. RR ) -> ( ( A. x e. dom F ( a <_ x -> ( abs ` ( F ` x ) ) <_ m ) /\ A. x e. dom G ( b <_ x -> ( abs ` ( ( G ` x ) - 0 ) ) < ( y / ( ( abs ` m ) + 1 ) ) ) ) -> E. z e. RR A. x e. ( dom F i^i dom G ) ( z <_ x -> ( abs ` ( ( F ` x ) x. ( G ` x ) ) ) < y ) ) ) |
| 124 | 123 | expcomd | |- ( ( ( ( ( F e. O(1) /\ G ~~>r 0 ) /\ y e. RR+ ) /\ ( a e. RR /\ m e. RR ) ) /\ b e. RR ) -> ( A. x e. dom G ( b <_ x -> ( abs ` ( ( G ` x ) - 0 ) ) < ( y / ( ( abs ` m ) + 1 ) ) ) -> ( A. x e. dom F ( a <_ x -> ( abs ` ( F ` x ) ) <_ m ) -> E. z e. RR A. x e. ( dom F i^i dom G ) ( z <_ x -> ( abs ` ( ( F ` x ) x. ( G ` x ) ) ) < y ) ) ) ) |
| 125 | 124 | rexlimdva | |- ( ( ( ( F e. O(1) /\ G ~~>r 0 ) /\ y e. RR+ ) /\ ( a e. RR /\ m e. RR ) ) -> ( E. b e. RR A. x e. dom G ( b <_ x -> ( abs ` ( ( G ` x ) - 0 ) ) < ( y / ( ( abs ` m ) + 1 ) ) ) -> ( A. x e. dom F ( a <_ x -> ( abs ` ( F ` x ) ) <_ m ) -> E. z e. RR A. x e. ( dom F i^i dom G ) ( z <_ x -> ( abs ` ( ( F ` x ) x. ( G ` x ) ) ) < y ) ) ) ) |
| 126 | 36 125 | mpd | |- ( ( ( ( F e. O(1) /\ G ~~>r 0 ) /\ y e. RR+ ) /\ ( a e. RR /\ m e. RR ) ) -> ( A. x e. dom F ( a <_ x -> ( abs ` ( F ` x ) ) <_ m ) -> E. z e. RR A. x e. ( dom F i^i dom G ) ( z <_ x -> ( abs ` ( ( F ` x ) x. ( G ` x ) ) ) < y ) ) ) |
| 127 | 126 | rexlimdvva | |- ( ( ( F e. O(1) /\ G ~~>r 0 ) /\ y e. RR+ ) -> ( E. a e. RR E. m e. RR A. x e. dom F ( a <_ x -> ( abs ` ( F ` x ) ) <_ m ) -> E. z e. RR A. x e. ( dom F i^i dom G ) ( z <_ x -> ( abs ` ( ( F ` x ) x. ( G ` x ) ) ) < y ) ) ) |
| 128 | 22 127 | mpd | |- ( ( ( F e. O(1) /\ G ~~>r 0 ) /\ y e. RR+ ) -> E. z e. RR A. x e. ( dom F i^i dom G ) ( z <_ x -> ( abs ` ( ( F ` x ) x. ( G ` x ) ) ) < y ) ) |
| 129 | 128 | ralrimiva | |- ( ( F e. O(1) /\ G ~~>r 0 ) -> A. y e. RR+ E. z e. RR A. x e. ( dom F i^i dom G ) ( z <_ x -> ( abs ` ( ( F ` x ) x. ( G ` x ) ) ) < y ) ) |
| 130 | ffvelcdm | |- ( ( F : dom F --> CC /\ x e. dom F ) -> ( F ` x ) e. CC ) |
|
| 131 | 2 73 130 | syl2an | |- ( ( ( F e. O(1) /\ G ~~>r 0 ) /\ x e. ( dom F i^i dom G ) ) -> ( F ` x ) e. CC ) |
| 132 | ffvelcdm | |- ( ( G : dom G --> CC /\ x e. dom G ) -> ( G ` x ) e. CC ) |
|
| 133 | 5 59 132 | syl2an | |- ( ( ( F e. O(1) /\ G ~~>r 0 ) /\ x e. ( dom F i^i dom G ) ) -> ( G ` x ) e. CC ) |
| 134 | 131 133 | mulcld | |- ( ( ( F e. O(1) /\ G ~~>r 0 ) /\ x e. ( dom F i^i dom G ) ) -> ( ( F ` x ) x. ( G ` x ) ) e. CC ) |
| 135 | 134 | ralrimiva | |- ( ( F e. O(1) /\ G ~~>r 0 ) -> A. x e. ( dom F i^i dom G ) ( ( F ` x ) x. ( G ` x ) ) e. CC ) |
| 136 | 135 51 | rlim0 | |- ( ( F e. O(1) /\ G ~~>r 0 ) -> ( ( x e. ( dom F i^i dom G ) |-> ( ( F ` x ) x. ( G ` x ) ) ) ~~>r 0 <-> A. y e. RR+ E. z e. RR A. x e. ( dom F i^i dom G ) ( z <_ x -> ( abs ` ( ( F ` x ) x. ( G ` x ) ) ) < y ) ) ) |
| 137 | 129 136 | mpbird | |- ( ( F e. O(1) /\ G ~~>r 0 ) -> ( x e. ( dom F i^i dom G ) |-> ( ( F ` x ) x. ( G ` x ) ) ) ~~>r 0 ) |
| 138 | 19 137 | eqbrtrd | |- ( ( F e. O(1) /\ G ~~>r 0 ) -> ( F oF x. G ) ~~>r 0 ) |