This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The defining property of an eventually bounded function. (Contributed by Mario Carneiro, 15-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | o1bdd | ⊢ ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐹 : 𝐴 ⟶ ℂ ) → ∃ 𝑥 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≤ 𝑦 → ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑚 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | ⊢ ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐹 : 𝐴 ⟶ ℂ ) → 𝐹 ∈ 𝑂(1) ) | |
| 2 | simpr | ⊢ ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐹 : 𝐴 ⟶ ℂ ) → 𝐹 : 𝐴 ⟶ ℂ ) | |
| 3 | fdm | ⊢ ( 𝐹 : 𝐴 ⟶ ℂ → dom 𝐹 = 𝐴 ) | |
| 4 | 3 | adantl | ⊢ ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐹 : 𝐴 ⟶ ℂ ) → dom 𝐹 = 𝐴 ) |
| 5 | o1dm | ⊢ ( 𝐹 ∈ 𝑂(1) → dom 𝐹 ⊆ ℝ ) | |
| 6 | 5 | adantr | ⊢ ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐹 : 𝐴 ⟶ ℂ ) → dom 𝐹 ⊆ ℝ ) |
| 7 | 4 6 | eqsstrrd | ⊢ ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐹 : 𝐴 ⟶ ℂ ) → 𝐴 ⊆ ℝ ) |
| 8 | elo12 | ⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℝ ) → ( 𝐹 ∈ 𝑂(1) ↔ ∃ 𝑥 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≤ 𝑦 → ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑚 ) ) ) | |
| 9 | 2 7 8 | syl2anc | ⊢ ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐹 : 𝐴 ⟶ ℂ ) → ( 𝐹 ∈ 𝑂(1) ↔ ∃ 𝑥 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≤ 𝑦 → ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑚 ) ) ) |
| 10 | 1 9 | mpbid | ⊢ ( ( 𝐹 ∈ 𝑂(1) ∧ 𝐹 : 𝐴 ⟶ ℂ ) → ∃ 𝑥 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≤ 𝑦 → ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑚 ) ) |