This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A real function is eventually bounded iff it is eventually lower bounded and eventually upper bounded. (Contributed by Mario Carneiro, 25-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | o1lo1.1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) | |
| Assertion | o1lo1 | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝑂(1) ↔ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ ≤𝑂(1) ∧ ( 𝑥 ∈ 𝐴 ↦ - 𝐵 ) ∈ ≤𝑂(1) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | o1lo1.1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) | |
| 2 | o1dm | ⊢ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝑂(1) → dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ⊆ ℝ ) | |
| 3 | 2 | a1i | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝑂(1) → dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ⊆ ℝ ) ) |
| 4 | lo1dm | ⊢ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ ≤𝑂(1) → dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ⊆ ℝ ) | |
| 5 | 4 | adantr | ⊢ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ ≤𝑂(1) ∧ ( 𝑥 ∈ 𝐴 ↦ - 𝐵 ) ∈ ≤𝑂(1) ) → dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ⊆ ℝ ) |
| 6 | 5 | a1i | ⊢ ( 𝜑 → ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ ≤𝑂(1) ∧ ( 𝑥 ∈ 𝐴 ↦ - 𝐵 ) ∈ ≤𝑂(1) ) → dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ⊆ ℝ ) ) |
| 7 | 1 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ℝ ) |
| 8 | dmmptg | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ℝ → dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = 𝐴 ) | |
| 9 | 7 8 | syl | ⊢ ( 𝜑 → dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = 𝐴 ) |
| 10 | 9 | sseq1d | ⊢ ( 𝜑 → ( dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ⊆ ℝ ↔ 𝐴 ⊆ ℝ ) ) |
| 11 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝐴 ⊆ ℝ ) ∧ 𝑚 ∈ ℝ ) → 𝑚 ∈ ℝ ) | |
| 12 | 1 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝐴 ⊆ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) |
| 13 | 12 | adantlr | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ⊆ ℝ ) ∧ 𝑚 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) |
| 14 | simplr | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ⊆ ℝ ) ∧ 𝑚 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → 𝑚 ∈ ℝ ) | |
| 15 | 13 14 | absled | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ⊆ ℝ ) ∧ 𝑚 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → ( ( abs ‘ 𝐵 ) ≤ 𝑚 ↔ ( - 𝑚 ≤ 𝐵 ∧ 𝐵 ≤ 𝑚 ) ) ) |
| 16 | ancom | ⊢ ( ( - 𝑚 ≤ 𝐵 ∧ 𝐵 ≤ 𝑚 ) ↔ ( 𝐵 ≤ 𝑚 ∧ - 𝑚 ≤ 𝐵 ) ) | |
| 17 | lenegcon1 | ⊢ ( ( 𝑚 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( - 𝑚 ≤ 𝐵 ↔ - 𝐵 ≤ 𝑚 ) ) | |
| 18 | 14 13 17 | syl2anc | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ⊆ ℝ ) ∧ 𝑚 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → ( - 𝑚 ≤ 𝐵 ↔ - 𝐵 ≤ 𝑚 ) ) |
| 19 | 18 | anbi2d | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ⊆ ℝ ) ∧ 𝑚 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐵 ≤ 𝑚 ∧ - 𝑚 ≤ 𝐵 ) ↔ ( 𝐵 ≤ 𝑚 ∧ - 𝐵 ≤ 𝑚 ) ) ) |
| 20 | 16 19 | bitrid | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ⊆ ℝ ) ∧ 𝑚 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → ( ( - 𝑚 ≤ 𝐵 ∧ 𝐵 ≤ 𝑚 ) ↔ ( 𝐵 ≤ 𝑚 ∧ - 𝐵 ≤ 𝑚 ) ) ) |
| 21 | 15 20 | bitrd | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ⊆ ℝ ) ∧ 𝑚 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → ( ( abs ‘ 𝐵 ) ≤ 𝑚 ↔ ( 𝐵 ≤ 𝑚 ∧ - 𝐵 ≤ 𝑚 ) ) ) |
| 22 | 21 | imbi2d | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ⊆ ℝ ) ∧ 𝑚 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝑐 ≤ 𝑥 → ( abs ‘ 𝐵 ) ≤ 𝑚 ) ↔ ( 𝑐 ≤ 𝑥 → ( 𝐵 ≤ 𝑚 ∧ - 𝐵 ≤ 𝑚 ) ) ) ) |
| 23 | 22 | ralbidva | ⊢ ( ( ( 𝜑 ∧ 𝐴 ⊆ ℝ ) ∧ 𝑚 ∈ ℝ ) → ( ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( abs ‘ 𝐵 ) ≤ 𝑚 ) ↔ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( 𝐵 ≤ 𝑚 ∧ - 𝐵 ≤ 𝑚 ) ) ) ) |
| 24 | 23 | rexbidv | ⊢ ( ( ( 𝜑 ∧ 𝐴 ⊆ ℝ ) ∧ 𝑚 ∈ ℝ ) → ( ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( abs ‘ 𝐵 ) ≤ 𝑚 ) ↔ ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( 𝐵 ≤ 𝑚 ∧ - 𝐵 ≤ 𝑚 ) ) ) ) |
| 25 | 24 | biimpd | ⊢ ( ( ( 𝜑 ∧ 𝐴 ⊆ ℝ ) ∧ 𝑚 ∈ ℝ ) → ( ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( abs ‘ 𝐵 ) ≤ 𝑚 ) → ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( 𝐵 ≤ 𝑚 ∧ - 𝐵 ≤ 𝑚 ) ) ) ) |
| 26 | breq2 | ⊢ ( 𝑛 = 𝑚 → ( 𝐵 ≤ 𝑛 ↔ 𝐵 ≤ 𝑚 ) ) | |
| 27 | 26 | anbi1d | ⊢ ( 𝑛 = 𝑚 → ( ( 𝐵 ≤ 𝑛 ∧ - 𝐵 ≤ 𝑝 ) ↔ ( 𝐵 ≤ 𝑚 ∧ - 𝐵 ≤ 𝑝 ) ) ) |
| 28 | 27 | imbi2d | ⊢ ( 𝑛 = 𝑚 → ( ( 𝑐 ≤ 𝑥 → ( 𝐵 ≤ 𝑛 ∧ - 𝐵 ≤ 𝑝 ) ) ↔ ( 𝑐 ≤ 𝑥 → ( 𝐵 ≤ 𝑚 ∧ - 𝐵 ≤ 𝑝 ) ) ) ) |
| 29 | 28 | rexralbidv | ⊢ ( 𝑛 = 𝑚 → ( ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( 𝐵 ≤ 𝑛 ∧ - 𝐵 ≤ 𝑝 ) ) ↔ ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( 𝐵 ≤ 𝑚 ∧ - 𝐵 ≤ 𝑝 ) ) ) ) |
| 30 | breq2 | ⊢ ( 𝑝 = 𝑚 → ( - 𝐵 ≤ 𝑝 ↔ - 𝐵 ≤ 𝑚 ) ) | |
| 31 | 30 | anbi2d | ⊢ ( 𝑝 = 𝑚 → ( ( 𝐵 ≤ 𝑚 ∧ - 𝐵 ≤ 𝑝 ) ↔ ( 𝐵 ≤ 𝑚 ∧ - 𝐵 ≤ 𝑚 ) ) ) |
| 32 | 31 | imbi2d | ⊢ ( 𝑝 = 𝑚 → ( ( 𝑐 ≤ 𝑥 → ( 𝐵 ≤ 𝑚 ∧ - 𝐵 ≤ 𝑝 ) ) ↔ ( 𝑐 ≤ 𝑥 → ( 𝐵 ≤ 𝑚 ∧ - 𝐵 ≤ 𝑚 ) ) ) ) |
| 33 | 32 | rexralbidv | ⊢ ( 𝑝 = 𝑚 → ( ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( 𝐵 ≤ 𝑚 ∧ - 𝐵 ≤ 𝑝 ) ) ↔ ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( 𝐵 ≤ 𝑚 ∧ - 𝐵 ≤ 𝑚 ) ) ) ) |
| 34 | 29 33 | rspc2ev | ⊢ ( ( 𝑚 ∈ ℝ ∧ 𝑚 ∈ ℝ ∧ ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( 𝐵 ≤ 𝑚 ∧ - 𝐵 ≤ 𝑚 ) ) ) → ∃ 𝑛 ∈ ℝ ∃ 𝑝 ∈ ℝ ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( 𝐵 ≤ 𝑛 ∧ - 𝐵 ≤ 𝑝 ) ) ) |
| 35 | 34 | 3anidm12 | ⊢ ( ( 𝑚 ∈ ℝ ∧ ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( 𝐵 ≤ 𝑚 ∧ - 𝐵 ≤ 𝑚 ) ) ) → ∃ 𝑛 ∈ ℝ ∃ 𝑝 ∈ ℝ ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( 𝐵 ≤ 𝑛 ∧ - 𝐵 ≤ 𝑝 ) ) ) |
| 36 | 11 25 35 | syl6an | ⊢ ( ( ( 𝜑 ∧ 𝐴 ⊆ ℝ ) ∧ 𝑚 ∈ ℝ ) → ( ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( abs ‘ 𝐵 ) ≤ 𝑚 ) → ∃ 𝑛 ∈ ℝ ∃ 𝑝 ∈ ℝ ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( 𝐵 ≤ 𝑛 ∧ - 𝐵 ≤ 𝑝 ) ) ) ) |
| 37 | 36 | rexlimdva | ⊢ ( ( 𝜑 ∧ 𝐴 ⊆ ℝ ) → ( ∃ 𝑚 ∈ ℝ ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( abs ‘ 𝐵 ) ≤ 𝑚 ) → ∃ 𝑛 ∈ ℝ ∃ 𝑝 ∈ ℝ ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( 𝐵 ≤ 𝑛 ∧ - 𝐵 ≤ 𝑝 ) ) ) ) |
| 38 | simplrr | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ⊆ ℝ ) ∧ ( 𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ ) ) ∧ 𝑛 ≤ 𝑝 ) → 𝑝 ∈ ℝ ) | |
| 39 | simplrl | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ⊆ ℝ ) ∧ ( 𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ ) ) ∧ ¬ 𝑛 ≤ 𝑝 ) → 𝑛 ∈ ℝ ) | |
| 40 | 38 39 | ifclda | ⊢ ( ( ( 𝜑 ∧ 𝐴 ⊆ ℝ ) ∧ ( 𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ ) ) → if ( 𝑛 ≤ 𝑝 , 𝑝 , 𝑛 ) ∈ ℝ ) |
| 41 | max2 | ⊢ ( ( 𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ ) → 𝑝 ≤ if ( 𝑛 ≤ 𝑝 , 𝑝 , 𝑛 ) ) | |
| 42 | 41 | ad2antlr | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ⊆ ℝ ) ∧ ( 𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ ) ) ∧ 𝑥 ∈ 𝐴 ) → 𝑝 ≤ if ( 𝑛 ≤ 𝑝 , 𝑝 , 𝑛 ) ) |
| 43 | 12 | adantlr | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ⊆ ℝ ) ∧ ( 𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ ) ) ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) |
| 44 | 43 | renegcld | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ⊆ ℝ ) ∧ ( 𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ ) ) ∧ 𝑥 ∈ 𝐴 ) → - 𝐵 ∈ ℝ ) |
| 45 | simplrr | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ⊆ ℝ ) ∧ ( 𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ ) ) ∧ 𝑥 ∈ 𝐴 ) → 𝑝 ∈ ℝ ) | |
| 46 | simplrl | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ⊆ ℝ ) ∧ ( 𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ ) ) ∧ 𝑥 ∈ 𝐴 ) → 𝑛 ∈ ℝ ) | |
| 47 | 45 46 | ifcld | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ⊆ ℝ ) ∧ ( 𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ ) ) ∧ 𝑥 ∈ 𝐴 ) → if ( 𝑛 ≤ 𝑝 , 𝑝 , 𝑛 ) ∈ ℝ ) |
| 48 | letr | ⊢ ( ( - 𝐵 ∈ ℝ ∧ 𝑝 ∈ ℝ ∧ if ( 𝑛 ≤ 𝑝 , 𝑝 , 𝑛 ) ∈ ℝ ) → ( ( - 𝐵 ≤ 𝑝 ∧ 𝑝 ≤ if ( 𝑛 ≤ 𝑝 , 𝑝 , 𝑛 ) ) → - 𝐵 ≤ if ( 𝑛 ≤ 𝑝 , 𝑝 , 𝑛 ) ) ) | |
| 49 | 44 45 47 48 | syl3anc | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ⊆ ℝ ) ∧ ( 𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ ) ) ∧ 𝑥 ∈ 𝐴 ) → ( ( - 𝐵 ≤ 𝑝 ∧ 𝑝 ≤ if ( 𝑛 ≤ 𝑝 , 𝑝 , 𝑛 ) ) → - 𝐵 ≤ if ( 𝑛 ≤ 𝑝 , 𝑝 , 𝑛 ) ) ) |
| 50 | 42 49 | mpan2d | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ⊆ ℝ ) ∧ ( 𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ ) ) ∧ 𝑥 ∈ 𝐴 ) → ( - 𝐵 ≤ 𝑝 → - 𝐵 ≤ if ( 𝑛 ≤ 𝑝 , 𝑝 , 𝑛 ) ) ) |
| 51 | lenegcon1 | ⊢ ( ( 𝐵 ∈ ℝ ∧ if ( 𝑛 ≤ 𝑝 , 𝑝 , 𝑛 ) ∈ ℝ ) → ( - 𝐵 ≤ if ( 𝑛 ≤ 𝑝 , 𝑝 , 𝑛 ) ↔ - if ( 𝑛 ≤ 𝑝 , 𝑝 , 𝑛 ) ≤ 𝐵 ) ) | |
| 52 | 43 47 51 | syl2anc | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ⊆ ℝ ) ∧ ( 𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ ) ) ∧ 𝑥 ∈ 𝐴 ) → ( - 𝐵 ≤ if ( 𝑛 ≤ 𝑝 , 𝑝 , 𝑛 ) ↔ - if ( 𝑛 ≤ 𝑝 , 𝑝 , 𝑛 ) ≤ 𝐵 ) ) |
| 53 | 50 52 | sylibd | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ⊆ ℝ ) ∧ ( 𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ ) ) ∧ 𝑥 ∈ 𝐴 ) → ( - 𝐵 ≤ 𝑝 → - if ( 𝑛 ≤ 𝑝 , 𝑝 , 𝑛 ) ≤ 𝐵 ) ) |
| 54 | max1 | ⊢ ( ( 𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ ) → 𝑛 ≤ if ( 𝑛 ≤ 𝑝 , 𝑝 , 𝑛 ) ) | |
| 55 | 54 | ad2antlr | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ⊆ ℝ ) ∧ ( 𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ ) ) ∧ 𝑥 ∈ 𝐴 ) → 𝑛 ≤ if ( 𝑛 ≤ 𝑝 , 𝑝 , 𝑛 ) ) |
| 56 | letr | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝑛 ∈ ℝ ∧ if ( 𝑛 ≤ 𝑝 , 𝑝 , 𝑛 ) ∈ ℝ ) → ( ( 𝐵 ≤ 𝑛 ∧ 𝑛 ≤ if ( 𝑛 ≤ 𝑝 , 𝑝 , 𝑛 ) ) → 𝐵 ≤ if ( 𝑛 ≤ 𝑝 , 𝑝 , 𝑛 ) ) ) | |
| 57 | 43 46 47 56 | syl3anc | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ⊆ ℝ ) ∧ ( 𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ ) ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐵 ≤ 𝑛 ∧ 𝑛 ≤ if ( 𝑛 ≤ 𝑝 , 𝑝 , 𝑛 ) ) → 𝐵 ≤ if ( 𝑛 ≤ 𝑝 , 𝑝 , 𝑛 ) ) ) |
| 58 | 55 57 | mpan2d | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ⊆ ℝ ) ∧ ( 𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ ) ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝐵 ≤ 𝑛 → 𝐵 ≤ if ( 𝑛 ≤ 𝑝 , 𝑝 , 𝑛 ) ) ) |
| 59 | 53 58 | anim12d | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ⊆ ℝ ) ∧ ( 𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ ) ) ∧ 𝑥 ∈ 𝐴 ) → ( ( - 𝐵 ≤ 𝑝 ∧ 𝐵 ≤ 𝑛 ) → ( - if ( 𝑛 ≤ 𝑝 , 𝑝 , 𝑛 ) ≤ 𝐵 ∧ 𝐵 ≤ if ( 𝑛 ≤ 𝑝 , 𝑝 , 𝑛 ) ) ) ) |
| 60 | 59 | ancomsd | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ⊆ ℝ ) ∧ ( 𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ ) ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐵 ≤ 𝑛 ∧ - 𝐵 ≤ 𝑝 ) → ( - if ( 𝑛 ≤ 𝑝 , 𝑝 , 𝑛 ) ≤ 𝐵 ∧ 𝐵 ≤ if ( 𝑛 ≤ 𝑝 , 𝑝 , 𝑛 ) ) ) ) |
| 61 | 43 47 | absled | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ⊆ ℝ ) ∧ ( 𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ ) ) ∧ 𝑥 ∈ 𝐴 ) → ( ( abs ‘ 𝐵 ) ≤ if ( 𝑛 ≤ 𝑝 , 𝑝 , 𝑛 ) ↔ ( - if ( 𝑛 ≤ 𝑝 , 𝑝 , 𝑛 ) ≤ 𝐵 ∧ 𝐵 ≤ if ( 𝑛 ≤ 𝑝 , 𝑝 , 𝑛 ) ) ) ) |
| 62 | 60 61 | sylibrd | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ⊆ ℝ ) ∧ ( 𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ ) ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐵 ≤ 𝑛 ∧ - 𝐵 ≤ 𝑝 ) → ( abs ‘ 𝐵 ) ≤ if ( 𝑛 ≤ 𝑝 , 𝑝 , 𝑛 ) ) ) |
| 63 | 62 | imim2d | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ⊆ ℝ ) ∧ ( 𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ ) ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝑐 ≤ 𝑥 → ( 𝐵 ≤ 𝑛 ∧ - 𝐵 ≤ 𝑝 ) ) → ( 𝑐 ≤ 𝑥 → ( abs ‘ 𝐵 ) ≤ if ( 𝑛 ≤ 𝑝 , 𝑝 , 𝑛 ) ) ) ) |
| 64 | 63 | ralimdva | ⊢ ( ( ( 𝜑 ∧ 𝐴 ⊆ ℝ ) ∧ ( 𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ ) ) → ( ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( 𝐵 ≤ 𝑛 ∧ - 𝐵 ≤ 𝑝 ) ) → ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( abs ‘ 𝐵 ) ≤ if ( 𝑛 ≤ 𝑝 , 𝑝 , 𝑛 ) ) ) ) |
| 65 | 64 | reximdv | ⊢ ( ( ( 𝜑 ∧ 𝐴 ⊆ ℝ ) ∧ ( 𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ ) ) → ( ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( 𝐵 ≤ 𝑛 ∧ - 𝐵 ≤ 𝑝 ) ) → ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( abs ‘ 𝐵 ) ≤ if ( 𝑛 ≤ 𝑝 , 𝑝 , 𝑛 ) ) ) ) |
| 66 | breq2 | ⊢ ( 𝑚 = if ( 𝑛 ≤ 𝑝 , 𝑝 , 𝑛 ) → ( ( abs ‘ 𝐵 ) ≤ 𝑚 ↔ ( abs ‘ 𝐵 ) ≤ if ( 𝑛 ≤ 𝑝 , 𝑝 , 𝑛 ) ) ) | |
| 67 | 66 | imbi2d | ⊢ ( 𝑚 = if ( 𝑛 ≤ 𝑝 , 𝑝 , 𝑛 ) → ( ( 𝑐 ≤ 𝑥 → ( abs ‘ 𝐵 ) ≤ 𝑚 ) ↔ ( 𝑐 ≤ 𝑥 → ( abs ‘ 𝐵 ) ≤ if ( 𝑛 ≤ 𝑝 , 𝑝 , 𝑛 ) ) ) ) |
| 68 | 67 | rexralbidv | ⊢ ( 𝑚 = if ( 𝑛 ≤ 𝑝 , 𝑝 , 𝑛 ) → ( ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( abs ‘ 𝐵 ) ≤ 𝑚 ) ↔ ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( abs ‘ 𝐵 ) ≤ if ( 𝑛 ≤ 𝑝 , 𝑝 , 𝑛 ) ) ) ) |
| 69 | 68 | rspcev | ⊢ ( ( if ( 𝑛 ≤ 𝑝 , 𝑝 , 𝑛 ) ∈ ℝ ∧ ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( abs ‘ 𝐵 ) ≤ if ( 𝑛 ≤ 𝑝 , 𝑝 , 𝑛 ) ) ) → ∃ 𝑚 ∈ ℝ ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( abs ‘ 𝐵 ) ≤ 𝑚 ) ) |
| 70 | 40 65 69 | syl6an | ⊢ ( ( ( 𝜑 ∧ 𝐴 ⊆ ℝ ) ∧ ( 𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ ) ) → ( ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( 𝐵 ≤ 𝑛 ∧ - 𝐵 ≤ 𝑝 ) ) → ∃ 𝑚 ∈ ℝ ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( abs ‘ 𝐵 ) ≤ 𝑚 ) ) ) |
| 71 | 70 | rexlimdvva | ⊢ ( ( 𝜑 ∧ 𝐴 ⊆ ℝ ) → ( ∃ 𝑛 ∈ ℝ ∃ 𝑝 ∈ ℝ ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( 𝐵 ≤ 𝑛 ∧ - 𝐵 ≤ 𝑝 ) ) → ∃ 𝑚 ∈ ℝ ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( abs ‘ 𝐵 ) ≤ 𝑚 ) ) ) |
| 72 | 37 71 | impbid | ⊢ ( ( 𝜑 ∧ 𝐴 ⊆ ℝ ) → ( ∃ 𝑚 ∈ ℝ ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( abs ‘ 𝐵 ) ≤ 𝑚 ) ↔ ∃ 𝑛 ∈ ℝ ∃ 𝑝 ∈ ℝ ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( 𝐵 ≤ 𝑛 ∧ - 𝐵 ≤ 𝑝 ) ) ) ) |
| 73 | rexanre | ⊢ ( 𝐴 ⊆ ℝ → ( ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( 𝐵 ≤ 𝑛 ∧ - 𝐵 ≤ 𝑝 ) ) ↔ ( ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → 𝐵 ≤ 𝑛 ) ∧ ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → - 𝐵 ≤ 𝑝 ) ) ) ) | |
| 74 | 73 | adantl | ⊢ ( ( 𝜑 ∧ 𝐴 ⊆ ℝ ) → ( ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( 𝐵 ≤ 𝑛 ∧ - 𝐵 ≤ 𝑝 ) ) ↔ ( ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → 𝐵 ≤ 𝑛 ) ∧ ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → - 𝐵 ≤ 𝑝 ) ) ) ) |
| 75 | 74 | 2rexbidv | ⊢ ( ( 𝜑 ∧ 𝐴 ⊆ ℝ ) → ( ∃ 𝑛 ∈ ℝ ∃ 𝑝 ∈ ℝ ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( 𝐵 ≤ 𝑛 ∧ - 𝐵 ≤ 𝑝 ) ) ↔ ∃ 𝑛 ∈ ℝ ∃ 𝑝 ∈ ℝ ( ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → 𝐵 ≤ 𝑛 ) ∧ ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → - 𝐵 ≤ 𝑝 ) ) ) ) |
| 76 | 72 75 | bitrd | ⊢ ( ( 𝜑 ∧ 𝐴 ⊆ ℝ ) → ( ∃ 𝑚 ∈ ℝ ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( abs ‘ 𝐵 ) ≤ 𝑚 ) ↔ ∃ 𝑛 ∈ ℝ ∃ 𝑝 ∈ ℝ ( ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → 𝐵 ≤ 𝑛 ) ∧ ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → - 𝐵 ≤ 𝑝 ) ) ) ) |
| 77 | reeanv | ⊢ ( ∃ 𝑛 ∈ ℝ ∃ 𝑝 ∈ ℝ ( ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → 𝐵 ≤ 𝑛 ) ∧ ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → - 𝐵 ≤ 𝑝 ) ) ↔ ( ∃ 𝑛 ∈ ℝ ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → 𝐵 ≤ 𝑛 ) ∧ ∃ 𝑝 ∈ ℝ ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → - 𝐵 ≤ 𝑝 ) ) ) | |
| 78 | 76 77 | bitrdi | ⊢ ( ( 𝜑 ∧ 𝐴 ⊆ ℝ ) → ( ∃ 𝑚 ∈ ℝ ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( abs ‘ 𝐵 ) ≤ 𝑚 ) ↔ ( ∃ 𝑛 ∈ ℝ ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → 𝐵 ≤ 𝑛 ) ∧ ∃ 𝑝 ∈ ℝ ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → - 𝐵 ≤ 𝑝 ) ) ) ) |
| 79 | rexcom | ⊢ ( ∃ 𝑐 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( abs ‘ 𝐵 ) ≤ 𝑚 ) ↔ ∃ 𝑚 ∈ ℝ ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( abs ‘ 𝐵 ) ≤ 𝑚 ) ) | |
| 80 | rexcom | ⊢ ( ∃ 𝑐 ∈ ℝ ∃ 𝑛 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → 𝐵 ≤ 𝑛 ) ↔ ∃ 𝑛 ∈ ℝ ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → 𝐵 ≤ 𝑛 ) ) | |
| 81 | rexcom | ⊢ ( ∃ 𝑐 ∈ ℝ ∃ 𝑝 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → - 𝐵 ≤ 𝑝 ) ↔ ∃ 𝑝 ∈ ℝ ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → - 𝐵 ≤ 𝑝 ) ) | |
| 82 | 80 81 | anbi12i | ⊢ ( ( ∃ 𝑐 ∈ ℝ ∃ 𝑛 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → 𝐵 ≤ 𝑛 ) ∧ ∃ 𝑐 ∈ ℝ ∃ 𝑝 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → - 𝐵 ≤ 𝑝 ) ) ↔ ( ∃ 𝑛 ∈ ℝ ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → 𝐵 ≤ 𝑛 ) ∧ ∃ 𝑝 ∈ ℝ ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → - 𝐵 ≤ 𝑝 ) ) ) |
| 83 | 78 79 82 | 3bitr4g | ⊢ ( ( 𝜑 ∧ 𝐴 ⊆ ℝ ) → ( ∃ 𝑐 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( abs ‘ 𝐵 ) ≤ 𝑚 ) ↔ ( ∃ 𝑐 ∈ ℝ ∃ 𝑛 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → 𝐵 ≤ 𝑛 ) ∧ ∃ 𝑐 ∈ ℝ ∃ 𝑝 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → - 𝐵 ≤ 𝑝 ) ) ) ) |
| 84 | simpr | ⊢ ( ( 𝜑 ∧ 𝐴 ⊆ ℝ ) → 𝐴 ⊆ ℝ ) | |
| 85 | 12 | recnd | ⊢ ( ( ( 𝜑 ∧ 𝐴 ⊆ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
| 86 | 84 85 | elo1mpt | ⊢ ( ( 𝜑 ∧ 𝐴 ⊆ ℝ ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝑂(1) ↔ ∃ 𝑐 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → ( abs ‘ 𝐵 ) ≤ 𝑚 ) ) ) |
| 87 | 84 12 | ello1mpt | ⊢ ( ( 𝜑 ∧ 𝐴 ⊆ ℝ ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ ≤𝑂(1) ↔ ∃ 𝑐 ∈ ℝ ∃ 𝑛 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → 𝐵 ≤ 𝑛 ) ) ) |
| 88 | 12 | renegcld | ⊢ ( ( ( 𝜑 ∧ 𝐴 ⊆ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → - 𝐵 ∈ ℝ ) |
| 89 | 84 88 | ello1mpt | ⊢ ( ( 𝜑 ∧ 𝐴 ⊆ ℝ ) → ( ( 𝑥 ∈ 𝐴 ↦ - 𝐵 ) ∈ ≤𝑂(1) ↔ ∃ 𝑐 ∈ ℝ ∃ 𝑝 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → - 𝐵 ≤ 𝑝 ) ) ) |
| 90 | 87 89 | anbi12d | ⊢ ( ( 𝜑 ∧ 𝐴 ⊆ ℝ ) → ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ ≤𝑂(1) ∧ ( 𝑥 ∈ 𝐴 ↦ - 𝐵 ) ∈ ≤𝑂(1) ) ↔ ( ∃ 𝑐 ∈ ℝ ∃ 𝑛 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → 𝐵 ≤ 𝑛 ) ∧ ∃ 𝑐 ∈ ℝ ∃ 𝑝 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑐 ≤ 𝑥 → - 𝐵 ≤ 𝑝 ) ) ) ) |
| 91 | 83 86 90 | 3bitr4d | ⊢ ( ( 𝜑 ∧ 𝐴 ⊆ ℝ ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝑂(1) ↔ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ ≤𝑂(1) ∧ ( 𝑥 ∈ 𝐴 ↦ - 𝐵 ) ∈ ≤𝑂(1) ) ) ) |
| 92 | 91 | ex | ⊢ ( 𝜑 → ( 𝐴 ⊆ ℝ → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝑂(1) ↔ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ ≤𝑂(1) ∧ ( 𝑥 ∈ 𝐴 ↦ - 𝐵 ) ∈ ≤𝑂(1) ) ) ) ) |
| 93 | 10 92 | sylbid | ⊢ ( 𝜑 → ( dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ⊆ ℝ → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝑂(1) ↔ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ ≤𝑂(1) ∧ ( 𝑥 ∈ 𝐴 ↦ - 𝐵 ) ∈ ≤𝑂(1) ) ) ) ) |
| 94 | 3 6 93 | pm5.21ndd | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝑂(1) ↔ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ ≤𝑂(1) ∧ ( 𝑥 ∈ 𝐴 ↦ - 𝐵 ) ∈ ≤𝑂(1) ) ) ) |