This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A lower bounded real function is eventually bounded iff it is eventually upper bounded. (Contributed by Mario Carneiro, 26-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | o1lo1.1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) | |
| o1lo12.2 | ⊢ ( 𝜑 → 𝑀 ∈ ℝ ) | ||
| o1lo12.3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑀 ≤ 𝐵 ) | ||
| Assertion | o1lo12 | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝑂(1) ↔ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ ≤𝑂(1) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | o1lo1.1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) | |
| 2 | o1lo12.2 | ⊢ ( 𝜑 → 𝑀 ∈ ℝ ) | |
| 3 | o1lo12.3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑀 ≤ 𝐵 ) | |
| 4 | o1dm | ⊢ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝑂(1) → dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ⊆ ℝ ) | |
| 5 | 4 | a1i | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝑂(1) → dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ⊆ ℝ ) ) |
| 6 | lo1dm | ⊢ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ ≤𝑂(1) → dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ⊆ ℝ ) | |
| 7 | 6 | a1i | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ ≤𝑂(1) → dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ⊆ ℝ ) ) |
| 8 | 1 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ℝ ) |
| 9 | dmmptg | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ℝ → dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = 𝐴 ) | |
| 10 | 8 9 | syl | ⊢ ( 𝜑 → dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = 𝐴 ) |
| 11 | 10 | sseq1d | ⊢ ( 𝜑 → ( dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ⊆ ℝ ↔ 𝐴 ⊆ ℝ ) ) |
| 12 | simpr | ⊢ ( ( 𝜑 ∧ 𝐴 ⊆ ℝ ) → 𝐴 ⊆ ℝ ) | |
| 13 | 1 | renegcld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → - 𝐵 ∈ ℝ ) |
| 14 | 13 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝐴 ⊆ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → - 𝐵 ∈ ℝ ) |
| 15 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝐴 ⊆ ℝ ) → 𝑀 ∈ ℝ ) |
| 16 | 15 | renegcld | ⊢ ( ( 𝜑 ∧ 𝐴 ⊆ ℝ ) → - 𝑀 ∈ ℝ ) |
| 17 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑀 ∈ ℝ ) |
| 18 | 17 1 | lenegd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑀 ≤ 𝐵 ↔ - 𝐵 ≤ - 𝑀 ) ) |
| 19 | 3 18 | mpbid | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → - 𝐵 ≤ - 𝑀 ) |
| 20 | 19 | ad2ant2r | ⊢ ( ( ( 𝜑 ∧ 𝐴 ⊆ ℝ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑀 ≤ 𝑥 ) ) → - 𝐵 ≤ - 𝑀 ) |
| 21 | 12 14 15 16 20 | ello1d | ⊢ ( ( 𝜑 ∧ 𝐴 ⊆ ℝ ) → ( 𝑥 ∈ 𝐴 ↦ - 𝐵 ) ∈ ≤𝑂(1) ) |
| 22 | 1 | o1lo1 | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝑂(1) ↔ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ ≤𝑂(1) ∧ ( 𝑥 ∈ 𝐴 ↦ - 𝐵 ) ∈ ≤𝑂(1) ) ) ) |
| 23 | 22 | rbaibd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ↦ - 𝐵 ) ∈ ≤𝑂(1) ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝑂(1) ↔ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ ≤𝑂(1) ) ) |
| 24 | 21 23 | syldan | ⊢ ( ( 𝜑 ∧ 𝐴 ⊆ ℝ ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝑂(1) ↔ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ ≤𝑂(1) ) ) |
| 25 | 24 | ex | ⊢ ( 𝜑 → ( 𝐴 ⊆ ℝ → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝑂(1) ↔ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ ≤𝑂(1) ) ) ) |
| 26 | 11 25 | sylbid | ⊢ ( 𝜑 → ( dom ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ⊆ ℝ → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝑂(1) ↔ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ ≤𝑂(1) ) ) ) |
| 27 | 5 7 26 | pm5.21ndd | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝑂(1) ↔ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ ≤𝑂(1) ) ) |