This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Elementhood in the set of eventually upper bounded functions. (Contributed by Mario Carneiro, 26-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ello1mpt.1 | ⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) | |
| ello1mpt.2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) | ||
| Assertion | ello1mpt | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ ≤𝑂(1) ↔ ∃ 𝑦 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑦 ≤ 𝑥 → 𝐵 ≤ 𝑚 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ello1mpt.1 | ⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) | |
| 2 | ello1mpt.2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) | |
| 3 | 2 | fmpttd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) : 𝐴 ⟶ ℝ ) |
| 4 | ello12 | ⊢ ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ ≤𝑂(1) ↔ ∃ 𝑦 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑧 ∈ 𝐴 ( 𝑦 ≤ 𝑧 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑧 ) ≤ 𝑚 ) ) ) | |
| 5 | 3 1 4 | syl2anc | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ ≤𝑂(1) ↔ ∃ 𝑦 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑧 ∈ 𝐴 ( 𝑦 ≤ 𝑧 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑧 ) ≤ 𝑚 ) ) ) |
| 6 | nfv | ⊢ Ⅎ 𝑥 𝑦 ≤ 𝑧 | |
| 7 | nffvmpt1 | ⊢ Ⅎ 𝑥 ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑧 ) | |
| 8 | nfcv | ⊢ Ⅎ 𝑥 ≤ | |
| 9 | nfcv | ⊢ Ⅎ 𝑥 𝑚 | |
| 10 | 7 8 9 | nfbr | ⊢ Ⅎ 𝑥 ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑧 ) ≤ 𝑚 |
| 11 | 6 10 | nfim | ⊢ Ⅎ 𝑥 ( 𝑦 ≤ 𝑧 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑧 ) ≤ 𝑚 ) |
| 12 | nfv | ⊢ Ⅎ 𝑧 ( 𝑦 ≤ 𝑥 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ≤ 𝑚 ) | |
| 13 | breq2 | ⊢ ( 𝑧 = 𝑥 → ( 𝑦 ≤ 𝑧 ↔ 𝑦 ≤ 𝑥 ) ) | |
| 14 | fveq2 | ⊢ ( 𝑧 = 𝑥 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑧 ) = ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) | |
| 15 | 14 | breq1d | ⊢ ( 𝑧 = 𝑥 → ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑧 ) ≤ 𝑚 ↔ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ≤ 𝑚 ) ) |
| 16 | 13 15 | imbi12d | ⊢ ( 𝑧 = 𝑥 → ( ( 𝑦 ≤ 𝑧 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑧 ) ≤ 𝑚 ) ↔ ( 𝑦 ≤ 𝑥 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ≤ 𝑚 ) ) ) |
| 17 | 11 12 16 | cbvralw | ⊢ ( ∀ 𝑧 ∈ 𝐴 ( 𝑦 ≤ 𝑧 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑧 ) ≤ 𝑚 ) ↔ ∀ 𝑥 ∈ 𝐴 ( 𝑦 ≤ 𝑥 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ≤ 𝑚 ) ) |
| 18 | simpr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝐴 ) | |
| 19 | eqid | ⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) | |
| 20 | 19 | fvmpt2 | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝐵 ∈ ℝ ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) = 𝐵 ) |
| 21 | 18 2 20 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) = 𝐵 ) |
| 22 | 21 | breq1d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ≤ 𝑚 ↔ 𝐵 ≤ 𝑚 ) ) |
| 23 | 22 | imbi2d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝑦 ≤ 𝑥 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ≤ 𝑚 ) ↔ ( 𝑦 ≤ 𝑥 → 𝐵 ≤ 𝑚 ) ) ) |
| 24 | 23 | ralbidva | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝐴 ( 𝑦 ≤ 𝑥 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ≤ 𝑚 ) ↔ ∀ 𝑥 ∈ 𝐴 ( 𝑦 ≤ 𝑥 → 𝐵 ≤ 𝑚 ) ) ) |
| 25 | 17 24 | bitrid | ⊢ ( 𝜑 → ( ∀ 𝑧 ∈ 𝐴 ( 𝑦 ≤ 𝑧 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑧 ) ≤ 𝑚 ) ↔ ∀ 𝑥 ∈ 𝐴 ( 𝑦 ≤ 𝑥 → 𝐵 ≤ 𝑚 ) ) ) |
| 26 | 25 | 2rexbidv | ⊢ ( 𝜑 → ( ∃ 𝑦 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑧 ∈ 𝐴 ( 𝑦 ≤ 𝑧 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑧 ) ≤ 𝑚 ) ↔ ∃ 𝑦 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑦 ≤ 𝑥 → 𝐵 ≤ 𝑚 ) ) ) |
| 27 | 5 26 | bitrd | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ ≤𝑂(1) ↔ ∃ 𝑦 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑦 ≤ 𝑥 → 𝐵 ≤ 𝑚 ) ) ) |