This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ordering property of multiplication. Proposition 8.19 of TakeutiZaring p. 63, limited to natural numbers. (Contributed by NM, 22-Jan-1996) (Revised by Mario Carneiro, 15-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nnmord | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) → ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐶 ) ↔ ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnmordi | ⊢ ( ( ( 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) ∧ ∅ ∈ 𝐶 ) → ( 𝐴 ∈ 𝐵 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝐵 ) ) ) | |
| 2 | 1 | ex | ⊢ ( ( 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) → ( ∅ ∈ 𝐶 → ( 𝐴 ∈ 𝐵 → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝐵 ) ) ) ) |
| 3 | 2 | impcomd | ⊢ ( ( 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) → ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐶 ) → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝐵 ) ) ) |
| 4 | 3 | 3adant1 | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) → ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐶 ) → ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝐵 ) ) ) |
| 5 | ne0i | ⊢ ( ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝐵 ) → ( 𝐶 ·o 𝐵 ) ≠ ∅ ) | |
| 6 | nnm0r | ⊢ ( 𝐵 ∈ ω → ( ∅ ·o 𝐵 ) = ∅ ) | |
| 7 | oveq1 | ⊢ ( 𝐶 = ∅ → ( 𝐶 ·o 𝐵 ) = ( ∅ ·o 𝐵 ) ) | |
| 8 | 7 | eqeq1d | ⊢ ( 𝐶 = ∅ → ( ( 𝐶 ·o 𝐵 ) = ∅ ↔ ( ∅ ·o 𝐵 ) = ∅ ) ) |
| 9 | 6 8 | syl5ibrcom | ⊢ ( 𝐵 ∈ ω → ( 𝐶 = ∅ → ( 𝐶 ·o 𝐵 ) = ∅ ) ) |
| 10 | 9 | necon3d | ⊢ ( 𝐵 ∈ ω → ( ( 𝐶 ·o 𝐵 ) ≠ ∅ → 𝐶 ≠ ∅ ) ) |
| 11 | 5 10 | syl5 | ⊢ ( 𝐵 ∈ ω → ( ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝐵 ) → 𝐶 ≠ ∅ ) ) |
| 12 | 11 | adantr | ⊢ ( ( 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) → ( ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝐵 ) → 𝐶 ≠ ∅ ) ) |
| 13 | nnord | ⊢ ( 𝐶 ∈ ω → Ord 𝐶 ) | |
| 14 | ord0eln0 | ⊢ ( Ord 𝐶 → ( ∅ ∈ 𝐶 ↔ 𝐶 ≠ ∅ ) ) | |
| 15 | 13 14 | syl | ⊢ ( 𝐶 ∈ ω → ( ∅ ∈ 𝐶 ↔ 𝐶 ≠ ∅ ) ) |
| 16 | 15 | adantl | ⊢ ( ( 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) → ( ∅ ∈ 𝐶 ↔ 𝐶 ≠ ∅ ) ) |
| 17 | 12 16 | sylibrd | ⊢ ( ( 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) → ( ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝐵 ) → ∅ ∈ 𝐶 ) ) |
| 18 | 17 | 3adant1 | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) → ( ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝐵 ) → ∅ ∈ 𝐶 ) ) |
| 19 | oveq2 | ⊢ ( 𝐴 = 𝐵 → ( 𝐶 ·o 𝐴 ) = ( 𝐶 ·o 𝐵 ) ) | |
| 20 | 19 | a1i | ⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) ∧ ∅ ∈ 𝐶 ) → ( 𝐴 = 𝐵 → ( 𝐶 ·o 𝐴 ) = ( 𝐶 ·o 𝐵 ) ) ) |
| 21 | nnmordi | ⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐶 ∈ ω ) ∧ ∅ ∈ 𝐶 ) → ( 𝐵 ∈ 𝐴 → ( 𝐶 ·o 𝐵 ) ∈ ( 𝐶 ·o 𝐴 ) ) ) | |
| 22 | 21 | 3adantl2 | ⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) ∧ ∅ ∈ 𝐶 ) → ( 𝐵 ∈ 𝐴 → ( 𝐶 ·o 𝐵 ) ∈ ( 𝐶 ·o 𝐴 ) ) ) |
| 23 | 20 22 | orim12d | ⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) ∧ ∅ ∈ 𝐶 ) → ( ( 𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴 ) → ( ( 𝐶 ·o 𝐴 ) = ( 𝐶 ·o 𝐵 ) ∨ ( 𝐶 ·o 𝐵 ) ∈ ( 𝐶 ·o 𝐴 ) ) ) ) |
| 24 | 23 | con3d | ⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) ∧ ∅ ∈ 𝐶 ) → ( ¬ ( ( 𝐶 ·o 𝐴 ) = ( 𝐶 ·o 𝐵 ) ∨ ( 𝐶 ·o 𝐵 ) ∈ ( 𝐶 ·o 𝐴 ) ) → ¬ ( 𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴 ) ) ) |
| 25 | simpl3 | ⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) ∧ ∅ ∈ 𝐶 ) → 𝐶 ∈ ω ) | |
| 26 | simpl1 | ⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) ∧ ∅ ∈ 𝐶 ) → 𝐴 ∈ ω ) | |
| 27 | nnmcl | ⊢ ( ( 𝐶 ∈ ω ∧ 𝐴 ∈ ω ) → ( 𝐶 ·o 𝐴 ) ∈ ω ) | |
| 28 | 25 26 27 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) ∧ ∅ ∈ 𝐶 ) → ( 𝐶 ·o 𝐴 ) ∈ ω ) |
| 29 | simpl2 | ⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) ∧ ∅ ∈ 𝐶 ) → 𝐵 ∈ ω ) | |
| 30 | nnmcl | ⊢ ( ( 𝐶 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐶 ·o 𝐵 ) ∈ ω ) | |
| 31 | 25 29 30 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) ∧ ∅ ∈ 𝐶 ) → ( 𝐶 ·o 𝐵 ) ∈ ω ) |
| 32 | nnord | ⊢ ( ( 𝐶 ·o 𝐴 ) ∈ ω → Ord ( 𝐶 ·o 𝐴 ) ) | |
| 33 | nnord | ⊢ ( ( 𝐶 ·o 𝐵 ) ∈ ω → Ord ( 𝐶 ·o 𝐵 ) ) | |
| 34 | ordtri2 | ⊢ ( ( Ord ( 𝐶 ·o 𝐴 ) ∧ Ord ( 𝐶 ·o 𝐵 ) ) → ( ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝐵 ) ↔ ¬ ( ( 𝐶 ·o 𝐴 ) = ( 𝐶 ·o 𝐵 ) ∨ ( 𝐶 ·o 𝐵 ) ∈ ( 𝐶 ·o 𝐴 ) ) ) ) | |
| 35 | 32 33 34 | syl2an | ⊢ ( ( ( 𝐶 ·o 𝐴 ) ∈ ω ∧ ( 𝐶 ·o 𝐵 ) ∈ ω ) → ( ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝐵 ) ↔ ¬ ( ( 𝐶 ·o 𝐴 ) = ( 𝐶 ·o 𝐵 ) ∨ ( 𝐶 ·o 𝐵 ) ∈ ( 𝐶 ·o 𝐴 ) ) ) ) |
| 36 | 28 31 35 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) ∧ ∅ ∈ 𝐶 ) → ( ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝐵 ) ↔ ¬ ( ( 𝐶 ·o 𝐴 ) = ( 𝐶 ·o 𝐵 ) ∨ ( 𝐶 ·o 𝐵 ) ∈ ( 𝐶 ·o 𝐴 ) ) ) ) |
| 37 | nnord | ⊢ ( 𝐴 ∈ ω → Ord 𝐴 ) | |
| 38 | nnord | ⊢ ( 𝐵 ∈ ω → Ord 𝐵 ) | |
| 39 | ordtri2 | ⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝐴 ∈ 𝐵 ↔ ¬ ( 𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴 ) ) ) | |
| 40 | 37 38 39 | syl2an | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐴 ∈ 𝐵 ↔ ¬ ( 𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴 ) ) ) |
| 41 | 26 29 40 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) ∧ ∅ ∈ 𝐶 ) → ( 𝐴 ∈ 𝐵 ↔ ¬ ( 𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴 ) ) ) |
| 42 | 24 36 41 | 3imtr4d | ⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) ∧ ∅ ∈ 𝐶 ) → ( ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝐵 ) → 𝐴 ∈ 𝐵 ) ) |
| 43 | 42 | ex | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) → ( ∅ ∈ 𝐶 → ( ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝐵 ) → 𝐴 ∈ 𝐵 ) ) ) |
| 44 | 43 | com23 | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) → ( ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝐵 ) → ( ∅ ∈ 𝐶 → 𝐴 ∈ 𝐵 ) ) ) |
| 45 | 18 44 | mpdd | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) → ( ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝐵 ) → 𝐴 ∈ 𝐵 ) ) |
| 46 | 45 18 | jcad | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) → ( ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝐵 ) → ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐶 ) ) ) |
| 47 | 4 46 | impbid | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω ) → ( ( 𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐶 ) ↔ ( 𝐶 ·o 𝐴 ) ∈ ( 𝐶 ·o 𝐵 ) ) ) |