This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A strictly-decreasing nonnegative integer sequence with initial term N reaches zero by the N th term. Deduction version. (Contributed by Paul Chapman, 31-Mar-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nn0seqcvgd.1 | ⊢ ( 𝜑 → 𝐹 : ℕ0 ⟶ ℕ0 ) | |
| nn0seqcvgd.2 | ⊢ ( 𝜑 → 𝑁 = ( 𝐹 ‘ 0 ) ) | ||
| nn0seqcvgd.3 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐹 ‘ ( 𝑘 + 1 ) ) ≠ 0 → ( 𝐹 ‘ ( 𝑘 + 1 ) ) < ( 𝐹 ‘ 𝑘 ) ) ) | ||
| Assertion | nn0seqcvgd | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝑁 ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0seqcvgd.1 | ⊢ ( 𝜑 → 𝐹 : ℕ0 ⟶ ℕ0 ) | |
| 2 | nn0seqcvgd.2 | ⊢ ( 𝜑 → 𝑁 = ( 𝐹 ‘ 0 ) ) | |
| 3 | nn0seqcvgd.3 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐹 ‘ ( 𝑘 + 1 ) ) ≠ 0 → ( 𝐹 ‘ ( 𝑘 + 1 ) ) < ( 𝐹 ‘ 𝑘 ) ) ) | |
| 4 | 0nn0 | ⊢ 0 ∈ ℕ0 | |
| 5 | ffvelcdm | ⊢ ( ( 𝐹 : ℕ0 ⟶ ℕ0 ∧ 0 ∈ ℕ0 ) → ( 𝐹 ‘ 0 ) ∈ ℕ0 ) | |
| 6 | 1 4 5 | sylancl | ⊢ ( 𝜑 → ( 𝐹 ‘ 0 ) ∈ ℕ0 ) |
| 7 | 2 6 | eqeltrd | ⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
| 8 | 7 | nn0red | ⊢ ( 𝜑 → 𝑁 ∈ ℝ ) |
| 9 | 8 | leidd | ⊢ ( 𝜑 → 𝑁 ≤ 𝑁 ) |
| 10 | fveq2 | ⊢ ( 𝑚 = 0 → ( 𝐹 ‘ 𝑚 ) = ( 𝐹 ‘ 0 ) ) | |
| 11 | oveq2 | ⊢ ( 𝑚 = 0 → ( 𝑁 − 𝑚 ) = ( 𝑁 − 0 ) ) | |
| 12 | 10 11 | breq12d | ⊢ ( 𝑚 = 0 → ( ( 𝐹 ‘ 𝑚 ) ≤ ( 𝑁 − 𝑚 ) ↔ ( 𝐹 ‘ 0 ) ≤ ( 𝑁 − 0 ) ) ) |
| 13 | 12 | imbi2d | ⊢ ( 𝑚 = 0 → ( ( 𝜑 → ( 𝐹 ‘ 𝑚 ) ≤ ( 𝑁 − 𝑚 ) ) ↔ ( 𝜑 → ( 𝐹 ‘ 0 ) ≤ ( 𝑁 − 0 ) ) ) ) |
| 14 | fveq2 | ⊢ ( 𝑚 = 𝑘 → ( 𝐹 ‘ 𝑚 ) = ( 𝐹 ‘ 𝑘 ) ) | |
| 15 | oveq2 | ⊢ ( 𝑚 = 𝑘 → ( 𝑁 − 𝑚 ) = ( 𝑁 − 𝑘 ) ) | |
| 16 | 14 15 | breq12d | ⊢ ( 𝑚 = 𝑘 → ( ( 𝐹 ‘ 𝑚 ) ≤ ( 𝑁 − 𝑚 ) ↔ ( 𝐹 ‘ 𝑘 ) ≤ ( 𝑁 − 𝑘 ) ) ) |
| 17 | 16 | imbi2d | ⊢ ( 𝑚 = 𝑘 → ( ( 𝜑 → ( 𝐹 ‘ 𝑚 ) ≤ ( 𝑁 − 𝑚 ) ) ↔ ( 𝜑 → ( 𝐹 ‘ 𝑘 ) ≤ ( 𝑁 − 𝑘 ) ) ) ) |
| 18 | fveq2 | ⊢ ( 𝑚 = ( 𝑘 + 1 ) → ( 𝐹 ‘ 𝑚 ) = ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) | |
| 19 | oveq2 | ⊢ ( 𝑚 = ( 𝑘 + 1 ) → ( 𝑁 − 𝑚 ) = ( 𝑁 − ( 𝑘 + 1 ) ) ) | |
| 20 | 18 19 | breq12d | ⊢ ( 𝑚 = ( 𝑘 + 1 ) → ( ( 𝐹 ‘ 𝑚 ) ≤ ( 𝑁 − 𝑚 ) ↔ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ≤ ( 𝑁 − ( 𝑘 + 1 ) ) ) ) |
| 21 | 20 | imbi2d | ⊢ ( 𝑚 = ( 𝑘 + 1 ) → ( ( 𝜑 → ( 𝐹 ‘ 𝑚 ) ≤ ( 𝑁 − 𝑚 ) ) ↔ ( 𝜑 → ( 𝐹 ‘ ( 𝑘 + 1 ) ) ≤ ( 𝑁 − ( 𝑘 + 1 ) ) ) ) ) |
| 22 | fveq2 | ⊢ ( 𝑚 = 𝑁 → ( 𝐹 ‘ 𝑚 ) = ( 𝐹 ‘ 𝑁 ) ) | |
| 23 | oveq2 | ⊢ ( 𝑚 = 𝑁 → ( 𝑁 − 𝑚 ) = ( 𝑁 − 𝑁 ) ) | |
| 24 | 22 23 | breq12d | ⊢ ( 𝑚 = 𝑁 → ( ( 𝐹 ‘ 𝑚 ) ≤ ( 𝑁 − 𝑚 ) ↔ ( 𝐹 ‘ 𝑁 ) ≤ ( 𝑁 − 𝑁 ) ) ) |
| 25 | 24 | imbi2d | ⊢ ( 𝑚 = 𝑁 → ( ( 𝜑 → ( 𝐹 ‘ 𝑚 ) ≤ ( 𝑁 − 𝑚 ) ) ↔ ( 𝜑 → ( 𝐹 ‘ 𝑁 ) ≤ ( 𝑁 − 𝑁 ) ) ) ) |
| 26 | 2 9 | eqbrtrrd | ⊢ ( 𝜑 → ( 𝐹 ‘ 0 ) ≤ 𝑁 ) |
| 27 | 8 | recnd | ⊢ ( 𝜑 → 𝑁 ∈ ℂ ) |
| 28 | 27 | subid1d | ⊢ ( 𝜑 → ( 𝑁 − 0 ) = 𝑁 ) |
| 29 | 26 28 | breqtrrd | ⊢ ( 𝜑 → ( 𝐹 ‘ 0 ) ≤ ( 𝑁 − 0 ) ) |
| 30 | 29 | a1i | ⊢ ( 𝑁 ∈ ℕ0 → ( 𝜑 → ( 𝐹 ‘ 0 ) ≤ ( 𝑁 − 0 ) ) ) |
| 31 | nn0re | ⊢ ( 𝑘 ∈ ℕ0 → 𝑘 ∈ ℝ ) | |
| 32 | posdif | ⊢ ( ( 𝑘 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( 𝑘 < 𝑁 ↔ 0 < ( 𝑁 − 𝑘 ) ) ) | |
| 33 | 31 8 32 | syl2anr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝑘 < 𝑁 ↔ 0 < ( 𝑁 − 𝑘 ) ) ) |
| 34 | 33 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ ( 𝐹 ‘ ( 𝑘 + 1 ) ) = 0 ) → ( 𝑘 < 𝑁 ↔ 0 < ( 𝑁 − 𝑘 ) ) ) |
| 35 | breq1 | ⊢ ( ( 𝐹 ‘ ( 𝑘 + 1 ) ) = 0 → ( ( 𝐹 ‘ ( 𝑘 + 1 ) ) < ( 𝑁 − 𝑘 ) ↔ 0 < ( 𝑁 − 𝑘 ) ) ) | |
| 36 | 35 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ ( 𝐹 ‘ ( 𝑘 + 1 ) ) = 0 ) → ( ( 𝐹 ‘ ( 𝑘 + 1 ) ) < ( 𝑁 − 𝑘 ) ↔ 0 < ( 𝑁 − 𝑘 ) ) ) |
| 37 | peano2nn0 | ⊢ ( 𝑘 ∈ ℕ0 → ( 𝑘 + 1 ) ∈ ℕ0 ) | |
| 38 | ffvelcdm | ⊢ ( ( 𝐹 : ℕ0 ⟶ ℕ0 ∧ ( 𝑘 + 1 ) ∈ ℕ0 ) → ( 𝐹 ‘ ( 𝑘 + 1 ) ) ∈ ℕ0 ) | |
| 39 | 1 37 38 | syl2an | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐹 ‘ ( 𝑘 + 1 ) ) ∈ ℕ0 ) |
| 40 | 39 | nn0zd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐹 ‘ ( 𝑘 + 1 ) ) ∈ ℤ ) |
| 41 | 7 | nn0zd | ⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
| 42 | nn0z | ⊢ ( 𝑘 ∈ ℕ0 → 𝑘 ∈ ℤ ) | |
| 43 | zsubcl | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑘 ∈ ℤ ) → ( 𝑁 − 𝑘 ) ∈ ℤ ) | |
| 44 | 41 42 43 | syl2an | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝑁 − 𝑘 ) ∈ ℤ ) |
| 45 | zltlem1 | ⊢ ( ( ( 𝐹 ‘ ( 𝑘 + 1 ) ) ∈ ℤ ∧ ( 𝑁 − 𝑘 ) ∈ ℤ ) → ( ( 𝐹 ‘ ( 𝑘 + 1 ) ) < ( 𝑁 − 𝑘 ) ↔ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ≤ ( ( 𝑁 − 𝑘 ) − 1 ) ) ) | |
| 46 | 40 44 45 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐹 ‘ ( 𝑘 + 1 ) ) < ( 𝑁 − 𝑘 ) ↔ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ≤ ( ( 𝑁 − 𝑘 ) − 1 ) ) ) |
| 47 | nn0cn | ⊢ ( 𝑘 ∈ ℕ0 → 𝑘 ∈ ℂ ) | |
| 48 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 49 | subsub4 | ⊢ ( ( 𝑁 ∈ ℂ ∧ 𝑘 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝑁 − 𝑘 ) − 1 ) = ( 𝑁 − ( 𝑘 + 1 ) ) ) | |
| 50 | 48 49 | mp3an3 | ⊢ ( ( 𝑁 ∈ ℂ ∧ 𝑘 ∈ ℂ ) → ( ( 𝑁 − 𝑘 ) − 1 ) = ( 𝑁 − ( 𝑘 + 1 ) ) ) |
| 51 | 27 47 50 | syl2an | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑁 − 𝑘 ) − 1 ) = ( 𝑁 − ( 𝑘 + 1 ) ) ) |
| 52 | 51 | breq2d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐹 ‘ ( 𝑘 + 1 ) ) ≤ ( ( 𝑁 − 𝑘 ) − 1 ) ↔ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ≤ ( 𝑁 − ( 𝑘 + 1 ) ) ) ) |
| 53 | 46 52 | bitrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐹 ‘ ( 𝑘 + 1 ) ) < ( 𝑁 − 𝑘 ) ↔ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ≤ ( 𝑁 − ( 𝑘 + 1 ) ) ) ) |
| 54 | 53 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ ( 𝐹 ‘ ( 𝑘 + 1 ) ) = 0 ) → ( ( 𝐹 ‘ ( 𝑘 + 1 ) ) < ( 𝑁 − 𝑘 ) ↔ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ≤ ( 𝑁 − ( 𝑘 + 1 ) ) ) ) |
| 55 | 34 36 54 | 3bitr2d | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ ( 𝐹 ‘ ( 𝑘 + 1 ) ) = 0 ) → ( 𝑘 < 𝑁 ↔ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ≤ ( 𝑁 − ( 𝑘 + 1 ) ) ) ) |
| 56 | 55 | biimpa | ⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ ( 𝐹 ‘ ( 𝑘 + 1 ) ) = 0 ) ∧ 𝑘 < 𝑁 ) → ( 𝐹 ‘ ( 𝑘 + 1 ) ) ≤ ( 𝑁 − ( 𝑘 + 1 ) ) ) |
| 57 | 56 | an32s | ⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑘 < 𝑁 ) ∧ ( 𝐹 ‘ ( 𝑘 + 1 ) ) = 0 ) → ( 𝐹 ‘ ( 𝑘 + 1 ) ) ≤ ( 𝑁 − ( 𝑘 + 1 ) ) ) |
| 58 | 57 | a1d | ⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑘 < 𝑁 ) ∧ ( 𝐹 ‘ ( 𝑘 + 1 ) ) = 0 ) → ( ( 𝐹 ‘ 𝑘 ) ≤ ( 𝑁 − 𝑘 ) → ( 𝐹 ‘ ( 𝑘 + 1 ) ) ≤ ( 𝑁 − ( 𝑘 + 1 ) ) ) ) |
| 59 | 39 | nn0red | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐹 ‘ ( 𝑘 + 1 ) ) ∈ ℝ ) |
| 60 | 1 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℕ0 ) |
| 61 | 60 | nn0red | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
| 62 | 44 | zred | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝑁 − 𝑘 ) ∈ ℝ ) |
| 63 | ltletr | ⊢ ( ( ( 𝐹 ‘ ( 𝑘 + 1 ) ) ∈ ℝ ∧ ( 𝐹 ‘ 𝑘 ) ∈ ℝ ∧ ( 𝑁 − 𝑘 ) ∈ ℝ ) → ( ( ( 𝐹 ‘ ( 𝑘 + 1 ) ) < ( 𝐹 ‘ 𝑘 ) ∧ ( 𝐹 ‘ 𝑘 ) ≤ ( 𝑁 − 𝑘 ) ) → ( 𝐹 ‘ ( 𝑘 + 1 ) ) < ( 𝑁 − 𝑘 ) ) ) | |
| 64 | 59 61 62 63 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( ( 𝐹 ‘ ( 𝑘 + 1 ) ) < ( 𝐹 ‘ 𝑘 ) ∧ ( 𝐹 ‘ 𝑘 ) ≤ ( 𝑁 − 𝑘 ) ) → ( 𝐹 ‘ ( 𝑘 + 1 ) ) < ( 𝑁 − 𝑘 ) ) ) |
| 65 | 64 53 | sylibd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( ( 𝐹 ‘ ( 𝑘 + 1 ) ) < ( 𝐹 ‘ 𝑘 ) ∧ ( 𝐹 ‘ 𝑘 ) ≤ ( 𝑁 − 𝑘 ) ) → ( 𝐹 ‘ ( 𝑘 + 1 ) ) ≤ ( 𝑁 − ( 𝑘 + 1 ) ) ) ) |
| 66 | 3 65 | syland | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( ( 𝐹 ‘ ( 𝑘 + 1 ) ) ≠ 0 ∧ ( 𝐹 ‘ 𝑘 ) ≤ ( 𝑁 − 𝑘 ) ) → ( 𝐹 ‘ ( 𝑘 + 1 ) ) ≤ ( 𝑁 − ( 𝑘 + 1 ) ) ) ) |
| 67 | 66 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑘 < 𝑁 ) → ( ( ( 𝐹 ‘ ( 𝑘 + 1 ) ) ≠ 0 ∧ ( 𝐹 ‘ 𝑘 ) ≤ ( 𝑁 − 𝑘 ) ) → ( 𝐹 ‘ ( 𝑘 + 1 ) ) ≤ ( 𝑁 − ( 𝑘 + 1 ) ) ) ) |
| 68 | 67 | expdimp | ⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑘 < 𝑁 ) ∧ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ≠ 0 ) → ( ( 𝐹 ‘ 𝑘 ) ≤ ( 𝑁 − 𝑘 ) → ( 𝐹 ‘ ( 𝑘 + 1 ) ) ≤ ( 𝑁 − ( 𝑘 + 1 ) ) ) ) |
| 69 | 58 68 | pm2.61dane | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑘 < 𝑁 ) → ( ( 𝐹 ‘ 𝑘 ) ≤ ( 𝑁 − 𝑘 ) → ( 𝐹 ‘ ( 𝑘 + 1 ) ) ≤ ( 𝑁 − ( 𝑘 + 1 ) ) ) ) |
| 70 | 69 | anasss | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℕ0 ∧ 𝑘 < 𝑁 ) ) → ( ( 𝐹 ‘ 𝑘 ) ≤ ( 𝑁 − 𝑘 ) → ( 𝐹 ‘ ( 𝑘 + 1 ) ) ≤ ( 𝑁 − ( 𝑘 + 1 ) ) ) ) |
| 71 | 70 | expcom | ⊢ ( ( 𝑘 ∈ ℕ0 ∧ 𝑘 < 𝑁 ) → ( 𝜑 → ( ( 𝐹 ‘ 𝑘 ) ≤ ( 𝑁 − 𝑘 ) → ( 𝐹 ‘ ( 𝑘 + 1 ) ) ≤ ( 𝑁 − ( 𝑘 + 1 ) ) ) ) ) |
| 72 | 71 | a2d | ⊢ ( ( 𝑘 ∈ ℕ0 ∧ 𝑘 < 𝑁 ) → ( ( 𝜑 → ( 𝐹 ‘ 𝑘 ) ≤ ( 𝑁 − 𝑘 ) ) → ( 𝜑 → ( 𝐹 ‘ ( 𝑘 + 1 ) ) ≤ ( 𝑁 − ( 𝑘 + 1 ) ) ) ) ) |
| 73 | 72 | 3adant1 | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑘 ∈ ℕ0 ∧ 𝑘 < 𝑁 ) → ( ( 𝜑 → ( 𝐹 ‘ 𝑘 ) ≤ ( 𝑁 − 𝑘 ) ) → ( 𝜑 → ( 𝐹 ‘ ( 𝑘 + 1 ) ) ≤ ( 𝑁 − ( 𝑘 + 1 ) ) ) ) ) |
| 74 | 13 17 21 25 30 73 | fnn0ind | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑁 ≤ 𝑁 ) → ( 𝜑 → ( 𝐹 ‘ 𝑁 ) ≤ ( 𝑁 − 𝑁 ) ) ) |
| 75 | 7 7 9 74 | syl3anc | ⊢ ( 𝜑 → ( 𝜑 → ( 𝐹 ‘ 𝑁 ) ≤ ( 𝑁 − 𝑁 ) ) ) |
| 76 | 75 | pm2.43i | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝑁 ) ≤ ( 𝑁 − 𝑁 ) ) |
| 77 | 27 | subidd | ⊢ ( 𝜑 → ( 𝑁 − 𝑁 ) = 0 ) |
| 78 | 76 77 | breqtrd | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝑁 ) ≤ 0 ) |
| 79 | 1 7 | ffvelcdmd | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝑁 ) ∈ ℕ0 ) |
| 80 | 79 | nn0ge0d | ⊢ ( 𝜑 → 0 ≤ ( 𝐹 ‘ 𝑁 ) ) |
| 81 | 79 | nn0red | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝑁 ) ∈ ℝ ) |
| 82 | 0re | ⊢ 0 ∈ ℝ | |
| 83 | letri3 | ⊢ ( ( ( 𝐹 ‘ 𝑁 ) ∈ ℝ ∧ 0 ∈ ℝ ) → ( ( 𝐹 ‘ 𝑁 ) = 0 ↔ ( ( 𝐹 ‘ 𝑁 ) ≤ 0 ∧ 0 ≤ ( 𝐹 ‘ 𝑁 ) ) ) ) | |
| 84 | 81 82 83 | sylancl | ⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝑁 ) = 0 ↔ ( ( 𝐹 ‘ 𝑁 ) ≤ 0 ∧ 0 ≤ ( 𝐹 ‘ 𝑁 ) ) ) ) |
| 85 | 78 80 84 | mpbir2and | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝑁 ) = 0 ) |