This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A sequence whose iteration function ignores the second argument is only affected by the first point of the initial value function. (Contributed by Mario Carneiro, 11-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | algrf.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| algrf.2 | ⊢ 𝑅 = seq 𝑀 ( ( 𝐹 ∘ 1st ) , ( 𝑍 × { 𝐴 } ) ) | ||
| Assertion | seq1st | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐴 ∈ 𝑉 ) → 𝑅 = seq 𝑀 ( ( 𝐹 ∘ 1st ) , { 〈 𝑀 , 𝐴 〉 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | algrf.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 2 | algrf.2 | ⊢ 𝑅 = seq 𝑀 ( ( 𝐹 ∘ 1st ) , ( 𝑍 × { 𝐴 } ) ) | |
| 3 | seqfn | ⊢ ( 𝑀 ∈ ℤ → seq 𝑀 ( ( 𝐹 ∘ 1st ) , ( 𝑍 × { 𝐴 } ) ) Fn ( ℤ≥ ‘ 𝑀 ) ) | |
| 4 | 3 | adantr | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐴 ∈ 𝑉 ) → seq 𝑀 ( ( 𝐹 ∘ 1st ) , ( 𝑍 × { 𝐴 } ) ) Fn ( ℤ≥ ‘ 𝑀 ) ) |
| 5 | seqfn | ⊢ ( 𝑀 ∈ ℤ → seq 𝑀 ( ( 𝐹 ∘ 1st ) , { 〈 𝑀 , 𝐴 〉 } ) Fn ( ℤ≥ ‘ 𝑀 ) ) | |
| 6 | 5 | adantr | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐴 ∈ 𝑉 ) → seq 𝑀 ( ( 𝐹 ∘ 1st ) , { 〈 𝑀 , 𝐴 〉 } ) Fn ( ℤ≥ ‘ 𝑀 ) ) |
| 7 | fveq2 | ⊢ ( 𝑦 = 𝑀 → ( seq 𝑀 ( ( 𝐹 ∘ 1st ) , ( 𝑍 × { 𝐴 } ) ) ‘ 𝑦 ) = ( seq 𝑀 ( ( 𝐹 ∘ 1st ) , ( 𝑍 × { 𝐴 } ) ) ‘ 𝑀 ) ) | |
| 8 | fveq2 | ⊢ ( 𝑦 = 𝑀 → ( seq 𝑀 ( ( 𝐹 ∘ 1st ) , { 〈 𝑀 , 𝐴 〉 } ) ‘ 𝑦 ) = ( seq 𝑀 ( ( 𝐹 ∘ 1st ) , { 〈 𝑀 , 𝐴 〉 } ) ‘ 𝑀 ) ) | |
| 9 | 7 8 | eqeq12d | ⊢ ( 𝑦 = 𝑀 → ( ( seq 𝑀 ( ( 𝐹 ∘ 1st ) , ( 𝑍 × { 𝐴 } ) ) ‘ 𝑦 ) = ( seq 𝑀 ( ( 𝐹 ∘ 1st ) , { 〈 𝑀 , 𝐴 〉 } ) ‘ 𝑦 ) ↔ ( seq 𝑀 ( ( 𝐹 ∘ 1st ) , ( 𝑍 × { 𝐴 } ) ) ‘ 𝑀 ) = ( seq 𝑀 ( ( 𝐹 ∘ 1st ) , { 〈 𝑀 , 𝐴 〉 } ) ‘ 𝑀 ) ) ) |
| 10 | 9 | imbi2d | ⊢ ( 𝑦 = 𝑀 → ( ( 𝐴 ∈ 𝑉 → ( seq 𝑀 ( ( 𝐹 ∘ 1st ) , ( 𝑍 × { 𝐴 } ) ) ‘ 𝑦 ) = ( seq 𝑀 ( ( 𝐹 ∘ 1st ) , { 〈 𝑀 , 𝐴 〉 } ) ‘ 𝑦 ) ) ↔ ( 𝐴 ∈ 𝑉 → ( seq 𝑀 ( ( 𝐹 ∘ 1st ) , ( 𝑍 × { 𝐴 } ) ) ‘ 𝑀 ) = ( seq 𝑀 ( ( 𝐹 ∘ 1st ) , { 〈 𝑀 , 𝐴 〉 } ) ‘ 𝑀 ) ) ) ) |
| 11 | fveq2 | ⊢ ( 𝑦 = 𝑥 → ( seq 𝑀 ( ( 𝐹 ∘ 1st ) , ( 𝑍 × { 𝐴 } ) ) ‘ 𝑦 ) = ( seq 𝑀 ( ( 𝐹 ∘ 1st ) , ( 𝑍 × { 𝐴 } ) ) ‘ 𝑥 ) ) | |
| 12 | fveq2 | ⊢ ( 𝑦 = 𝑥 → ( seq 𝑀 ( ( 𝐹 ∘ 1st ) , { 〈 𝑀 , 𝐴 〉 } ) ‘ 𝑦 ) = ( seq 𝑀 ( ( 𝐹 ∘ 1st ) , { 〈 𝑀 , 𝐴 〉 } ) ‘ 𝑥 ) ) | |
| 13 | 11 12 | eqeq12d | ⊢ ( 𝑦 = 𝑥 → ( ( seq 𝑀 ( ( 𝐹 ∘ 1st ) , ( 𝑍 × { 𝐴 } ) ) ‘ 𝑦 ) = ( seq 𝑀 ( ( 𝐹 ∘ 1st ) , { 〈 𝑀 , 𝐴 〉 } ) ‘ 𝑦 ) ↔ ( seq 𝑀 ( ( 𝐹 ∘ 1st ) , ( 𝑍 × { 𝐴 } ) ) ‘ 𝑥 ) = ( seq 𝑀 ( ( 𝐹 ∘ 1st ) , { 〈 𝑀 , 𝐴 〉 } ) ‘ 𝑥 ) ) ) |
| 14 | 13 | imbi2d | ⊢ ( 𝑦 = 𝑥 → ( ( 𝐴 ∈ 𝑉 → ( seq 𝑀 ( ( 𝐹 ∘ 1st ) , ( 𝑍 × { 𝐴 } ) ) ‘ 𝑦 ) = ( seq 𝑀 ( ( 𝐹 ∘ 1st ) , { 〈 𝑀 , 𝐴 〉 } ) ‘ 𝑦 ) ) ↔ ( 𝐴 ∈ 𝑉 → ( seq 𝑀 ( ( 𝐹 ∘ 1st ) , ( 𝑍 × { 𝐴 } ) ) ‘ 𝑥 ) = ( seq 𝑀 ( ( 𝐹 ∘ 1st ) , { 〈 𝑀 , 𝐴 〉 } ) ‘ 𝑥 ) ) ) ) |
| 15 | fveq2 | ⊢ ( 𝑦 = ( 𝑥 + 1 ) → ( seq 𝑀 ( ( 𝐹 ∘ 1st ) , ( 𝑍 × { 𝐴 } ) ) ‘ 𝑦 ) = ( seq 𝑀 ( ( 𝐹 ∘ 1st ) , ( 𝑍 × { 𝐴 } ) ) ‘ ( 𝑥 + 1 ) ) ) | |
| 16 | fveq2 | ⊢ ( 𝑦 = ( 𝑥 + 1 ) → ( seq 𝑀 ( ( 𝐹 ∘ 1st ) , { 〈 𝑀 , 𝐴 〉 } ) ‘ 𝑦 ) = ( seq 𝑀 ( ( 𝐹 ∘ 1st ) , { 〈 𝑀 , 𝐴 〉 } ) ‘ ( 𝑥 + 1 ) ) ) | |
| 17 | 15 16 | eqeq12d | ⊢ ( 𝑦 = ( 𝑥 + 1 ) → ( ( seq 𝑀 ( ( 𝐹 ∘ 1st ) , ( 𝑍 × { 𝐴 } ) ) ‘ 𝑦 ) = ( seq 𝑀 ( ( 𝐹 ∘ 1st ) , { 〈 𝑀 , 𝐴 〉 } ) ‘ 𝑦 ) ↔ ( seq 𝑀 ( ( 𝐹 ∘ 1st ) , ( 𝑍 × { 𝐴 } ) ) ‘ ( 𝑥 + 1 ) ) = ( seq 𝑀 ( ( 𝐹 ∘ 1st ) , { 〈 𝑀 , 𝐴 〉 } ) ‘ ( 𝑥 + 1 ) ) ) ) |
| 18 | 17 | imbi2d | ⊢ ( 𝑦 = ( 𝑥 + 1 ) → ( ( 𝐴 ∈ 𝑉 → ( seq 𝑀 ( ( 𝐹 ∘ 1st ) , ( 𝑍 × { 𝐴 } ) ) ‘ 𝑦 ) = ( seq 𝑀 ( ( 𝐹 ∘ 1st ) , { 〈 𝑀 , 𝐴 〉 } ) ‘ 𝑦 ) ) ↔ ( 𝐴 ∈ 𝑉 → ( seq 𝑀 ( ( 𝐹 ∘ 1st ) , ( 𝑍 × { 𝐴 } ) ) ‘ ( 𝑥 + 1 ) ) = ( seq 𝑀 ( ( 𝐹 ∘ 1st ) , { 〈 𝑀 , 𝐴 〉 } ) ‘ ( 𝑥 + 1 ) ) ) ) ) |
| 19 | seq1 | ⊢ ( 𝑀 ∈ ℤ → ( seq 𝑀 ( ( 𝐹 ∘ 1st ) , ( 𝑍 × { 𝐴 } ) ) ‘ 𝑀 ) = ( ( 𝑍 × { 𝐴 } ) ‘ 𝑀 ) ) | |
| 20 | 19 | adantr | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐴 ∈ 𝑉 ) → ( seq 𝑀 ( ( 𝐹 ∘ 1st ) , ( 𝑍 × { 𝐴 } ) ) ‘ 𝑀 ) = ( ( 𝑍 × { 𝐴 } ) ‘ 𝑀 ) ) |
| 21 | seq1 | ⊢ ( 𝑀 ∈ ℤ → ( seq 𝑀 ( ( 𝐹 ∘ 1st ) , { 〈 𝑀 , 𝐴 〉 } ) ‘ 𝑀 ) = ( { 〈 𝑀 , 𝐴 〉 } ‘ 𝑀 ) ) | |
| 22 | 21 | adantr | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐴 ∈ 𝑉 ) → ( seq 𝑀 ( ( 𝐹 ∘ 1st ) , { 〈 𝑀 , 𝐴 〉 } ) ‘ 𝑀 ) = ( { 〈 𝑀 , 𝐴 〉 } ‘ 𝑀 ) ) |
| 23 | id | ⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ∈ 𝑉 ) | |
| 24 | uzid | ⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 25 | 24 1 | eleqtrrdi | ⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ 𝑍 ) |
| 26 | fvconst2g | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑀 ∈ 𝑍 ) → ( ( 𝑍 × { 𝐴 } ) ‘ 𝑀 ) = 𝐴 ) | |
| 27 | 23 25 26 | syl2anr | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐴 ∈ 𝑉 ) → ( ( 𝑍 × { 𝐴 } ) ‘ 𝑀 ) = 𝐴 ) |
| 28 | fvsng | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐴 ∈ 𝑉 ) → ( { 〈 𝑀 , 𝐴 〉 } ‘ 𝑀 ) = 𝐴 ) | |
| 29 | 27 28 | eqtr4d | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐴 ∈ 𝑉 ) → ( ( 𝑍 × { 𝐴 } ) ‘ 𝑀 ) = ( { 〈 𝑀 , 𝐴 〉 } ‘ 𝑀 ) ) |
| 30 | 22 29 | eqtr4d | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐴 ∈ 𝑉 ) → ( seq 𝑀 ( ( 𝐹 ∘ 1st ) , { 〈 𝑀 , 𝐴 〉 } ) ‘ 𝑀 ) = ( ( 𝑍 × { 𝐴 } ) ‘ 𝑀 ) ) |
| 31 | 20 30 | eqtr4d | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐴 ∈ 𝑉 ) → ( seq 𝑀 ( ( 𝐹 ∘ 1st ) , ( 𝑍 × { 𝐴 } ) ) ‘ 𝑀 ) = ( seq 𝑀 ( ( 𝐹 ∘ 1st ) , { 〈 𝑀 , 𝐴 〉 } ) ‘ 𝑀 ) ) |
| 32 | 31 | ex | ⊢ ( 𝑀 ∈ ℤ → ( 𝐴 ∈ 𝑉 → ( seq 𝑀 ( ( 𝐹 ∘ 1st ) , ( 𝑍 × { 𝐴 } ) ) ‘ 𝑀 ) = ( seq 𝑀 ( ( 𝐹 ∘ 1st ) , { 〈 𝑀 , 𝐴 〉 } ) ‘ 𝑀 ) ) ) |
| 33 | fveq2 | ⊢ ( ( seq 𝑀 ( ( 𝐹 ∘ 1st ) , ( 𝑍 × { 𝐴 } ) ) ‘ 𝑥 ) = ( seq 𝑀 ( ( 𝐹 ∘ 1st ) , { 〈 𝑀 , 𝐴 〉 } ) ‘ 𝑥 ) → ( 𝐹 ‘ ( seq 𝑀 ( ( 𝐹 ∘ 1st ) , ( 𝑍 × { 𝐴 } ) ) ‘ 𝑥 ) ) = ( 𝐹 ‘ ( seq 𝑀 ( ( 𝐹 ∘ 1st ) , { 〈 𝑀 , 𝐴 〉 } ) ‘ 𝑥 ) ) ) | |
| 34 | seqp1 | ⊢ ( 𝑥 ∈ ( ℤ≥ ‘ 𝑀 ) → ( seq 𝑀 ( ( 𝐹 ∘ 1st ) , ( 𝑍 × { 𝐴 } ) ) ‘ ( 𝑥 + 1 ) ) = ( ( seq 𝑀 ( ( 𝐹 ∘ 1st ) , ( 𝑍 × { 𝐴 } ) ) ‘ 𝑥 ) ( 𝐹 ∘ 1st ) ( ( 𝑍 × { 𝐴 } ) ‘ ( 𝑥 + 1 ) ) ) ) | |
| 35 | fvex | ⊢ ( seq 𝑀 ( ( 𝐹 ∘ 1st ) , ( 𝑍 × { 𝐴 } ) ) ‘ 𝑥 ) ∈ V | |
| 36 | fvex | ⊢ ( ( 𝑍 × { 𝐴 } ) ‘ ( 𝑥 + 1 ) ) ∈ V | |
| 37 | 35 36 | opco1i | ⊢ ( ( seq 𝑀 ( ( 𝐹 ∘ 1st ) , ( 𝑍 × { 𝐴 } ) ) ‘ 𝑥 ) ( 𝐹 ∘ 1st ) ( ( 𝑍 × { 𝐴 } ) ‘ ( 𝑥 + 1 ) ) ) = ( 𝐹 ‘ ( seq 𝑀 ( ( 𝐹 ∘ 1st ) , ( 𝑍 × { 𝐴 } ) ) ‘ 𝑥 ) ) |
| 38 | 34 37 | eqtrdi | ⊢ ( 𝑥 ∈ ( ℤ≥ ‘ 𝑀 ) → ( seq 𝑀 ( ( 𝐹 ∘ 1st ) , ( 𝑍 × { 𝐴 } ) ) ‘ ( 𝑥 + 1 ) ) = ( 𝐹 ‘ ( seq 𝑀 ( ( 𝐹 ∘ 1st ) , ( 𝑍 × { 𝐴 } ) ) ‘ 𝑥 ) ) ) |
| 39 | seqp1 | ⊢ ( 𝑥 ∈ ( ℤ≥ ‘ 𝑀 ) → ( seq 𝑀 ( ( 𝐹 ∘ 1st ) , { 〈 𝑀 , 𝐴 〉 } ) ‘ ( 𝑥 + 1 ) ) = ( ( seq 𝑀 ( ( 𝐹 ∘ 1st ) , { 〈 𝑀 , 𝐴 〉 } ) ‘ 𝑥 ) ( 𝐹 ∘ 1st ) ( { 〈 𝑀 , 𝐴 〉 } ‘ ( 𝑥 + 1 ) ) ) ) | |
| 40 | fvex | ⊢ ( seq 𝑀 ( ( 𝐹 ∘ 1st ) , { 〈 𝑀 , 𝐴 〉 } ) ‘ 𝑥 ) ∈ V | |
| 41 | fvex | ⊢ ( { 〈 𝑀 , 𝐴 〉 } ‘ ( 𝑥 + 1 ) ) ∈ V | |
| 42 | 40 41 | opco1i | ⊢ ( ( seq 𝑀 ( ( 𝐹 ∘ 1st ) , { 〈 𝑀 , 𝐴 〉 } ) ‘ 𝑥 ) ( 𝐹 ∘ 1st ) ( { 〈 𝑀 , 𝐴 〉 } ‘ ( 𝑥 + 1 ) ) ) = ( 𝐹 ‘ ( seq 𝑀 ( ( 𝐹 ∘ 1st ) , { 〈 𝑀 , 𝐴 〉 } ) ‘ 𝑥 ) ) |
| 43 | 39 42 | eqtrdi | ⊢ ( 𝑥 ∈ ( ℤ≥ ‘ 𝑀 ) → ( seq 𝑀 ( ( 𝐹 ∘ 1st ) , { 〈 𝑀 , 𝐴 〉 } ) ‘ ( 𝑥 + 1 ) ) = ( 𝐹 ‘ ( seq 𝑀 ( ( 𝐹 ∘ 1st ) , { 〈 𝑀 , 𝐴 〉 } ) ‘ 𝑥 ) ) ) |
| 44 | 38 43 | eqeq12d | ⊢ ( 𝑥 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( seq 𝑀 ( ( 𝐹 ∘ 1st ) , ( 𝑍 × { 𝐴 } ) ) ‘ ( 𝑥 + 1 ) ) = ( seq 𝑀 ( ( 𝐹 ∘ 1st ) , { 〈 𝑀 , 𝐴 〉 } ) ‘ ( 𝑥 + 1 ) ) ↔ ( 𝐹 ‘ ( seq 𝑀 ( ( 𝐹 ∘ 1st ) , ( 𝑍 × { 𝐴 } ) ) ‘ 𝑥 ) ) = ( 𝐹 ‘ ( seq 𝑀 ( ( 𝐹 ∘ 1st ) , { 〈 𝑀 , 𝐴 〉 } ) ‘ 𝑥 ) ) ) ) |
| 45 | 44 | adantl | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑥 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( seq 𝑀 ( ( 𝐹 ∘ 1st ) , ( 𝑍 × { 𝐴 } ) ) ‘ ( 𝑥 + 1 ) ) = ( seq 𝑀 ( ( 𝐹 ∘ 1st ) , { 〈 𝑀 , 𝐴 〉 } ) ‘ ( 𝑥 + 1 ) ) ↔ ( 𝐹 ‘ ( seq 𝑀 ( ( 𝐹 ∘ 1st ) , ( 𝑍 × { 𝐴 } ) ) ‘ 𝑥 ) ) = ( 𝐹 ‘ ( seq 𝑀 ( ( 𝐹 ∘ 1st ) , { 〈 𝑀 , 𝐴 〉 } ) ‘ 𝑥 ) ) ) ) |
| 46 | 33 45 | imbitrrid | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑥 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( seq 𝑀 ( ( 𝐹 ∘ 1st ) , ( 𝑍 × { 𝐴 } ) ) ‘ 𝑥 ) = ( seq 𝑀 ( ( 𝐹 ∘ 1st ) , { 〈 𝑀 , 𝐴 〉 } ) ‘ 𝑥 ) → ( seq 𝑀 ( ( 𝐹 ∘ 1st ) , ( 𝑍 × { 𝐴 } ) ) ‘ ( 𝑥 + 1 ) ) = ( seq 𝑀 ( ( 𝐹 ∘ 1st ) , { 〈 𝑀 , 𝐴 〉 } ) ‘ ( 𝑥 + 1 ) ) ) ) |
| 47 | 46 | expcom | ⊢ ( 𝑥 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝐴 ∈ 𝑉 → ( ( seq 𝑀 ( ( 𝐹 ∘ 1st ) , ( 𝑍 × { 𝐴 } ) ) ‘ 𝑥 ) = ( seq 𝑀 ( ( 𝐹 ∘ 1st ) , { 〈 𝑀 , 𝐴 〉 } ) ‘ 𝑥 ) → ( seq 𝑀 ( ( 𝐹 ∘ 1st ) , ( 𝑍 × { 𝐴 } ) ) ‘ ( 𝑥 + 1 ) ) = ( seq 𝑀 ( ( 𝐹 ∘ 1st ) , { 〈 𝑀 , 𝐴 〉 } ) ‘ ( 𝑥 + 1 ) ) ) ) ) |
| 48 | 47 | a2d | ⊢ ( 𝑥 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( 𝐴 ∈ 𝑉 → ( seq 𝑀 ( ( 𝐹 ∘ 1st ) , ( 𝑍 × { 𝐴 } ) ) ‘ 𝑥 ) = ( seq 𝑀 ( ( 𝐹 ∘ 1st ) , { 〈 𝑀 , 𝐴 〉 } ) ‘ 𝑥 ) ) → ( 𝐴 ∈ 𝑉 → ( seq 𝑀 ( ( 𝐹 ∘ 1st ) , ( 𝑍 × { 𝐴 } ) ) ‘ ( 𝑥 + 1 ) ) = ( seq 𝑀 ( ( 𝐹 ∘ 1st ) , { 〈 𝑀 , 𝐴 〉 } ) ‘ ( 𝑥 + 1 ) ) ) ) ) |
| 49 | 10 14 18 14 32 48 | uzind4 | ⊢ ( 𝑥 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝐴 ∈ 𝑉 → ( seq 𝑀 ( ( 𝐹 ∘ 1st ) , ( 𝑍 × { 𝐴 } ) ) ‘ 𝑥 ) = ( seq 𝑀 ( ( 𝐹 ∘ 1st ) , { 〈 𝑀 , 𝐴 〉 } ) ‘ 𝑥 ) ) ) |
| 50 | 49 | impcom | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑥 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( seq 𝑀 ( ( 𝐹 ∘ 1st ) , ( 𝑍 × { 𝐴 } ) ) ‘ 𝑥 ) = ( seq 𝑀 ( ( 𝐹 ∘ 1st ) , { 〈 𝑀 , 𝐴 〉 } ) ‘ 𝑥 ) ) |
| 51 | 50 | adantll | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝐴 ∈ 𝑉 ) ∧ 𝑥 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( seq 𝑀 ( ( 𝐹 ∘ 1st ) , ( 𝑍 × { 𝐴 } ) ) ‘ 𝑥 ) = ( seq 𝑀 ( ( 𝐹 ∘ 1st ) , { 〈 𝑀 , 𝐴 〉 } ) ‘ 𝑥 ) ) |
| 52 | 4 6 51 | eqfnfvd | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐴 ∈ 𝑉 ) → seq 𝑀 ( ( 𝐹 ∘ 1st ) , ( 𝑍 × { 𝐴 } ) ) = seq 𝑀 ( ( 𝐹 ∘ 1st ) , { 〈 𝑀 , 𝐴 〉 } ) ) |
| 53 | 2 52 | eqtrid | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐴 ∈ 𝑉 ) → 𝑅 = seq 𝑀 ( ( 𝐹 ∘ 1st ) , { 〈 𝑀 , 𝐴 〉 } ) ) |