This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Induction on the integers from 0 to N inclusive. The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. (Contributed by Paul Chapman, 31-Mar-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fnn0ind.1 | ⊢ ( 𝑥 = 0 → ( 𝜑 ↔ 𝜓 ) ) | |
| fnn0ind.2 | ⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜒 ) ) | ||
| fnn0ind.3 | ⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 𝜑 ↔ 𝜃 ) ) | ||
| fnn0ind.4 | ⊢ ( 𝑥 = 𝐾 → ( 𝜑 ↔ 𝜏 ) ) | ||
| fnn0ind.5 | ⊢ ( 𝑁 ∈ ℕ0 → 𝜓 ) | ||
| fnn0ind.6 | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ∧ 𝑦 < 𝑁 ) → ( 𝜒 → 𝜃 ) ) | ||
| Assertion | fnn0ind | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ∧ 𝐾 ≤ 𝑁 ) → 𝜏 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnn0ind.1 | ⊢ ( 𝑥 = 0 → ( 𝜑 ↔ 𝜓 ) ) | |
| 2 | fnn0ind.2 | ⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜒 ) ) | |
| 3 | fnn0ind.3 | ⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 𝜑 ↔ 𝜃 ) ) | |
| 4 | fnn0ind.4 | ⊢ ( 𝑥 = 𝐾 → ( 𝜑 ↔ 𝜏 ) ) | |
| 5 | fnn0ind.5 | ⊢ ( 𝑁 ∈ ℕ0 → 𝜓 ) | |
| 6 | fnn0ind.6 | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ∧ 𝑦 < 𝑁 ) → ( 𝜒 → 𝜃 ) ) | |
| 7 | elnn0z | ⊢ ( 𝐾 ∈ ℕ0 ↔ ( 𝐾 ∈ ℤ ∧ 0 ≤ 𝐾 ) ) | |
| 8 | nn0z | ⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ ) | |
| 9 | 0z | ⊢ 0 ∈ ℤ | |
| 10 | elnn0z | ⊢ ( 𝑁 ∈ ℕ0 ↔ ( 𝑁 ∈ ℤ ∧ 0 ≤ 𝑁 ) ) | |
| 11 | 10 5 | sylbir | ⊢ ( ( 𝑁 ∈ ℤ ∧ 0 ≤ 𝑁 ) → 𝜓 ) |
| 12 | 11 | 3adant1 | ⊢ ( ( 0 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 0 ≤ 𝑁 ) → 𝜓 ) |
| 13 | 0re | ⊢ 0 ∈ ℝ | |
| 14 | zre | ⊢ ( 𝑦 ∈ ℤ → 𝑦 ∈ ℝ ) | |
| 15 | zre | ⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℝ ) | |
| 16 | lelttr | ⊢ ( ( 0 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( ( 0 ≤ 𝑦 ∧ 𝑦 < 𝑁 ) → 0 < 𝑁 ) ) | |
| 17 | ltle | ⊢ ( ( 0 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( 0 < 𝑁 → 0 ≤ 𝑁 ) ) | |
| 18 | 17 | 3adant2 | ⊢ ( ( 0 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( 0 < 𝑁 → 0 ≤ 𝑁 ) ) |
| 19 | 16 18 | syld | ⊢ ( ( 0 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( ( 0 ≤ 𝑦 ∧ 𝑦 < 𝑁 ) → 0 ≤ 𝑁 ) ) |
| 20 | 13 14 15 19 | mp3an3an | ⊢ ( ( 𝑦 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 0 ≤ 𝑦 ∧ 𝑦 < 𝑁 ) → 0 ≤ 𝑁 ) ) |
| 21 | 20 | ex | ⊢ ( 𝑦 ∈ ℤ → ( 𝑁 ∈ ℤ → ( ( 0 ≤ 𝑦 ∧ 𝑦 < 𝑁 ) → 0 ≤ 𝑁 ) ) ) |
| 22 | 21 | com23 | ⊢ ( 𝑦 ∈ ℤ → ( ( 0 ≤ 𝑦 ∧ 𝑦 < 𝑁 ) → ( 𝑁 ∈ ℤ → 0 ≤ 𝑁 ) ) ) |
| 23 | 22 | 3impib | ⊢ ( ( 𝑦 ∈ ℤ ∧ 0 ≤ 𝑦 ∧ 𝑦 < 𝑁 ) → ( 𝑁 ∈ ℤ → 0 ≤ 𝑁 ) ) |
| 24 | 23 | impcom | ⊢ ( ( 𝑁 ∈ ℤ ∧ ( 𝑦 ∈ ℤ ∧ 0 ≤ 𝑦 ∧ 𝑦 < 𝑁 ) ) → 0 ≤ 𝑁 ) |
| 25 | elnn0z | ⊢ ( 𝑦 ∈ ℕ0 ↔ ( 𝑦 ∈ ℤ ∧ 0 ≤ 𝑦 ) ) | |
| 26 | 25 | anbi1i | ⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝑦 < 𝑁 ) ↔ ( ( 𝑦 ∈ ℤ ∧ 0 ≤ 𝑦 ) ∧ 𝑦 < 𝑁 ) ) |
| 27 | 6 | 3expb | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑦 ∈ ℕ0 ∧ 𝑦 < 𝑁 ) ) → ( 𝜒 → 𝜃 ) ) |
| 28 | 10 26 27 | syl2anbr | ⊢ ( ( ( 𝑁 ∈ ℤ ∧ 0 ≤ 𝑁 ) ∧ ( ( 𝑦 ∈ ℤ ∧ 0 ≤ 𝑦 ) ∧ 𝑦 < 𝑁 ) ) → ( 𝜒 → 𝜃 ) ) |
| 29 | 28 | expcom | ⊢ ( ( ( 𝑦 ∈ ℤ ∧ 0 ≤ 𝑦 ) ∧ 𝑦 < 𝑁 ) → ( ( 𝑁 ∈ ℤ ∧ 0 ≤ 𝑁 ) → ( 𝜒 → 𝜃 ) ) ) |
| 30 | 29 | 3impa | ⊢ ( ( 𝑦 ∈ ℤ ∧ 0 ≤ 𝑦 ∧ 𝑦 < 𝑁 ) → ( ( 𝑁 ∈ ℤ ∧ 0 ≤ 𝑁 ) → ( 𝜒 → 𝜃 ) ) ) |
| 31 | 30 | expd | ⊢ ( ( 𝑦 ∈ ℤ ∧ 0 ≤ 𝑦 ∧ 𝑦 < 𝑁 ) → ( 𝑁 ∈ ℤ → ( 0 ≤ 𝑁 → ( 𝜒 → 𝜃 ) ) ) ) |
| 32 | 31 | impcom | ⊢ ( ( 𝑁 ∈ ℤ ∧ ( 𝑦 ∈ ℤ ∧ 0 ≤ 𝑦 ∧ 𝑦 < 𝑁 ) ) → ( 0 ≤ 𝑁 → ( 𝜒 → 𝜃 ) ) ) |
| 33 | 24 32 | mpd | ⊢ ( ( 𝑁 ∈ ℤ ∧ ( 𝑦 ∈ ℤ ∧ 0 ≤ 𝑦 ∧ 𝑦 < 𝑁 ) ) → ( 𝜒 → 𝜃 ) ) |
| 34 | 33 | adantll | ⊢ ( ( ( 0 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑦 ∈ ℤ ∧ 0 ≤ 𝑦 ∧ 𝑦 < 𝑁 ) ) → ( 𝜒 → 𝜃 ) ) |
| 35 | 1 2 3 4 12 34 | fzind | ⊢ ( ( ( 0 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 𝐾 ∈ ℤ ∧ 0 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁 ) ) → 𝜏 ) |
| 36 | 9 35 | mpanl1 | ⊢ ( ( 𝑁 ∈ ℤ ∧ ( 𝐾 ∈ ℤ ∧ 0 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁 ) ) → 𝜏 ) |
| 37 | 36 | expcom | ⊢ ( ( 𝐾 ∈ ℤ ∧ 0 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁 ) → ( 𝑁 ∈ ℤ → 𝜏 ) ) |
| 38 | 8 37 | syl5 | ⊢ ( ( 𝐾 ∈ ℤ ∧ 0 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁 ) → ( 𝑁 ∈ ℕ0 → 𝜏 ) ) |
| 39 | 38 | 3expa | ⊢ ( ( ( 𝐾 ∈ ℤ ∧ 0 ≤ 𝐾 ) ∧ 𝐾 ≤ 𝑁 ) → ( 𝑁 ∈ ℕ0 → 𝜏 ) ) |
| 40 | 7 39 | sylanb | ⊢ ( ( 𝐾 ∈ ℕ0 ∧ 𝐾 ≤ 𝑁 ) → ( 𝑁 ∈ ℕ0 → 𝜏 ) ) |
| 41 | 40 | impcom | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝐾 ∈ ℕ0 ∧ 𝐾 ≤ 𝑁 ) ) → 𝜏 ) |
| 42 | 41 | 3impb | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ∧ 𝐾 ≤ 𝑁 ) → 𝜏 ) |