This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A strictly-decreasing nonnegative integer sequence with initial term N reaches zero by the N th term. Deduction version. (Contributed by Paul Chapman, 31-Mar-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nn0seqcvgd.1 | |- ( ph -> F : NN0 --> NN0 ) |
|
| nn0seqcvgd.2 | |- ( ph -> N = ( F ` 0 ) ) |
||
| nn0seqcvgd.3 | |- ( ( ph /\ k e. NN0 ) -> ( ( F ` ( k + 1 ) ) =/= 0 -> ( F ` ( k + 1 ) ) < ( F ` k ) ) ) |
||
| Assertion | nn0seqcvgd | |- ( ph -> ( F ` N ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0seqcvgd.1 | |- ( ph -> F : NN0 --> NN0 ) |
|
| 2 | nn0seqcvgd.2 | |- ( ph -> N = ( F ` 0 ) ) |
|
| 3 | nn0seqcvgd.3 | |- ( ( ph /\ k e. NN0 ) -> ( ( F ` ( k + 1 ) ) =/= 0 -> ( F ` ( k + 1 ) ) < ( F ` k ) ) ) |
|
| 4 | 0nn0 | |- 0 e. NN0 |
|
| 5 | ffvelcdm | |- ( ( F : NN0 --> NN0 /\ 0 e. NN0 ) -> ( F ` 0 ) e. NN0 ) |
|
| 6 | 1 4 5 | sylancl | |- ( ph -> ( F ` 0 ) e. NN0 ) |
| 7 | 2 6 | eqeltrd | |- ( ph -> N e. NN0 ) |
| 8 | 7 | nn0red | |- ( ph -> N e. RR ) |
| 9 | 8 | leidd | |- ( ph -> N <_ N ) |
| 10 | fveq2 | |- ( m = 0 -> ( F ` m ) = ( F ` 0 ) ) |
|
| 11 | oveq2 | |- ( m = 0 -> ( N - m ) = ( N - 0 ) ) |
|
| 12 | 10 11 | breq12d | |- ( m = 0 -> ( ( F ` m ) <_ ( N - m ) <-> ( F ` 0 ) <_ ( N - 0 ) ) ) |
| 13 | 12 | imbi2d | |- ( m = 0 -> ( ( ph -> ( F ` m ) <_ ( N - m ) ) <-> ( ph -> ( F ` 0 ) <_ ( N - 0 ) ) ) ) |
| 14 | fveq2 | |- ( m = k -> ( F ` m ) = ( F ` k ) ) |
|
| 15 | oveq2 | |- ( m = k -> ( N - m ) = ( N - k ) ) |
|
| 16 | 14 15 | breq12d | |- ( m = k -> ( ( F ` m ) <_ ( N - m ) <-> ( F ` k ) <_ ( N - k ) ) ) |
| 17 | 16 | imbi2d | |- ( m = k -> ( ( ph -> ( F ` m ) <_ ( N - m ) ) <-> ( ph -> ( F ` k ) <_ ( N - k ) ) ) ) |
| 18 | fveq2 | |- ( m = ( k + 1 ) -> ( F ` m ) = ( F ` ( k + 1 ) ) ) |
|
| 19 | oveq2 | |- ( m = ( k + 1 ) -> ( N - m ) = ( N - ( k + 1 ) ) ) |
|
| 20 | 18 19 | breq12d | |- ( m = ( k + 1 ) -> ( ( F ` m ) <_ ( N - m ) <-> ( F ` ( k + 1 ) ) <_ ( N - ( k + 1 ) ) ) ) |
| 21 | 20 | imbi2d | |- ( m = ( k + 1 ) -> ( ( ph -> ( F ` m ) <_ ( N - m ) ) <-> ( ph -> ( F ` ( k + 1 ) ) <_ ( N - ( k + 1 ) ) ) ) ) |
| 22 | fveq2 | |- ( m = N -> ( F ` m ) = ( F ` N ) ) |
|
| 23 | oveq2 | |- ( m = N -> ( N - m ) = ( N - N ) ) |
|
| 24 | 22 23 | breq12d | |- ( m = N -> ( ( F ` m ) <_ ( N - m ) <-> ( F ` N ) <_ ( N - N ) ) ) |
| 25 | 24 | imbi2d | |- ( m = N -> ( ( ph -> ( F ` m ) <_ ( N - m ) ) <-> ( ph -> ( F ` N ) <_ ( N - N ) ) ) ) |
| 26 | 2 9 | eqbrtrrd | |- ( ph -> ( F ` 0 ) <_ N ) |
| 27 | 8 | recnd | |- ( ph -> N e. CC ) |
| 28 | 27 | subid1d | |- ( ph -> ( N - 0 ) = N ) |
| 29 | 26 28 | breqtrrd | |- ( ph -> ( F ` 0 ) <_ ( N - 0 ) ) |
| 30 | 29 | a1i | |- ( N e. NN0 -> ( ph -> ( F ` 0 ) <_ ( N - 0 ) ) ) |
| 31 | nn0re | |- ( k e. NN0 -> k e. RR ) |
|
| 32 | posdif | |- ( ( k e. RR /\ N e. RR ) -> ( k < N <-> 0 < ( N - k ) ) ) |
|
| 33 | 31 8 32 | syl2anr | |- ( ( ph /\ k e. NN0 ) -> ( k < N <-> 0 < ( N - k ) ) ) |
| 34 | 33 | adantr | |- ( ( ( ph /\ k e. NN0 ) /\ ( F ` ( k + 1 ) ) = 0 ) -> ( k < N <-> 0 < ( N - k ) ) ) |
| 35 | breq1 | |- ( ( F ` ( k + 1 ) ) = 0 -> ( ( F ` ( k + 1 ) ) < ( N - k ) <-> 0 < ( N - k ) ) ) |
|
| 36 | 35 | adantl | |- ( ( ( ph /\ k e. NN0 ) /\ ( F ` ( k + 1 ) ) = 0 ) -> ( ( F ` ( k + 1 ) ) < ( N - k ) <-> 0 < ( N - k ) ) ) |
| 37 | peano2nn0 | |- ( k e. NN0 -> ( k + 1 ) e. NN0 ) |
|
| 38 | ffvelcdm | |- ( ( F : NN0 --> NN0 /\ ( k + 1 ) e. NN0 ) -> ( F ` ( k + 1 ) ) e. NN0 ) |
|
| 39 | 1 37 38 | syl2an | |- ( ( ph /\ k e. NN0 ) -> ( F ` ( k + 1 ) ) e. NN0 ) |
| 40 | 39 | nn0zd | |- ( ( ph /\ k e. NN0 ) -> ( F ` ( k + 1 ) ) e. ZZ ) |
| 41 | 7 | nn0zd | |- ( ph -> N e. ZZ ) |
| 42 | nn0z | |- ( k e. NN0 -> k e. ZZ ) |
|
| 43 | zsubcl | |- ( ( N e. ZZ /\ k e. ZZ ) -> ( N - k ) e. ZZ ) |
|
| 44 | 41 42 43 | syl2an | |- ( ( ph /\ k e. NN0 ) -> ( N - k ) e. ZZ ) |
| 45 | zltlem1 | |- ( ( ( F ` ( k + 1 ) ) e. ZZ /\ ( N - k ) e. ZZ ) -> ( ( F ` ( k + 1 ) ) < ( N - k ) <-> ( F ` ( k + 1 ) ) <_ ( ( N - k ) - 1 ) ) ) |
|
| 46 | 40 44 45 | syl2anc | |- ( ( ph /\ k e. NN0 ) -> ( ( F ` ( k + 1 ) ) < ( N - k ) <-> ( F ` ( k + 1 ) ) <_ ( ( N - k ) - 1 ) ) ) |
| 47 | nn0cn | |- ( k e. NN0 -> k e. CC ) |
|
| 48 | ax-1cn | |- 1 e. CC |
|
| 49 | subsub4 | |- ( ( N e. CC /\ k e. CC /\ 1 e. CC ) -> ( ( N - k ) - 1 ) = ( N - ( k + 1 ) ) ) |
|
| 50 | 48 49 | mp3an3 | |- ( ( N e. CC /\ k e. CC ) -> ( ( N - k ) - 1 ) = ( N - ( k + 1 ) ) ) |
| 51 | 27 47 50 | syl2an | |- ( ( ph /\ k e. NN0 ) -> ( ( N - k ) - 1 ) = ( N - ( k + 1 ) ) ) |
| 52 | 51 | breq2d | |- ( ( ph /\ k e. NN0 ) -> ( ( F ` ( k + 1 ) ) <_ ( ( N - k ) - 1 ) <-> ( F ` ( k + 1 ) ) <_ ( N - ( k + 1 ) ) ) ) |
| 53 | 46 52 | bitrd | |- ( ( ph /\ k e. NN0 ) -> ( ( F ` ( k + 1 ) ) < ( N - k ) <-> ( F ` ( k + 1 ) ) <_ ( N - ( k + 1 ) ) ) ) |
| 54 | 53 | adantr | |- ( ( ( ph /\ k e. NN0 ) /\ ( F ` ( k + 1 ) ) = 0 ) -> ( ( F ` ( k + 1 ) ) < ( N - k ) <-> ( F ` ( k + 1 ) ) <_ ( N - ( k + 1 ) ) ) ) |
| 55 | 34 36 54 | 3bitr2d | |- ( ( ( ph /\ k e. NN0 ) /\ ( F ` ( k + 1 ) ) = 0 ) -> ( k < N <-> ( F ` ( k + 1 ) ) <_ ( N - ( k + 1 ) ) ) ) |
| 56 | 55 | biimpa | |- ( ( ( ( ph /\ k e. NN0 ) /\ ( F ` ( k + 1 ) ) = 0 ) /\ k < N ) -> ( F ` ( k + 1 ) ) <_ ( N - ( k + 1 ) ) ) |
| 57 | 56 | an32s | |- ( ( ( ( ph /\ k e. NN0 ) /\ k < N ) /\ ( F ` ( k + 1 ) ) = 0 ) -> ( F ` ( k + 1 ) ) <_ ( N - ( k + 1 ) ) ) |
| 58 | 57 | a1d | |- ( ( ( ( ph /\ k e. NN0 ) /\ k < N ) /\ ( F ` ( k + 1 ) ) = 0 ) -> ( ( F ` k ) <_ ( N - k ) -> ( F ` ( k + 1 ) ) <_ ( N - ( k + 1 ) ) ) ) |
| 59 | 39 | nn0red | |- ( ( ph /\ k e. NN0 ) -> ( F ` ( k + 1 ) ) e. RR ) |
| 60 | 1 | ffvelcdmda | |- ( ( ph /\ k e. NN0 ) -> ( F ` k ) e. NN0 ) |
| 61 | 60 | nn0red | |- ( ( ph /\ k e. NN0 ) -> ( F ` k ) e. RR ) |
| 62 | 44 | zred | |- ( ( ph /\ k e. NN0 ) -> ( N - k ) e. RR ) |
| 63 | ltletr | |- ( ( ( F ` ( k + 1 ) ) e. RR /\ ( F ` k ) e. RR /\ ( N - k ) e. RR ) -> ( ( ( F ` ( k + 1 ) ) < ( F ` k ) /\ ( F ` k ) <_ ( N - k ) ) -> ( F ` ( k + 1 ) ) < ( N - k ) ) ) |
|
| 64 | 59 61 62 63 | syl3anc | |- ( ( ph /\ k e. NN0 ) -> ( ( ( F ` ( k + 1 ) ) < ( F ` k ) /\ ( F ` k ) <_ ( N - k ) ) -> ( F ` ( k + 1 ) ) < ( N - k ) ) ) |
| 65 | 64 53 | sylibd | |- ( ( ph /\ k e. NN0 ) -> ( ( ( F ` ( k + 1 ) ) < ( F ` k ) /\ ( F ` k ) <_ ( N - k ) ) -> ( F ` ( k + 1 ) ) <_ ( N - ( k + 1 ) ) ) ) |
| 66 | 3 65 | syland | |- ( ( ph /\ k e. NN0 ) -> ( ( ( F ` ( k + 1 ) ) =/= 0 /\ ( F ` k ) <_ ( N - k ) ) -> ( F ` ( k + 1 ) ) <_ ( N - ( k + 1 ) ) ) ) |
| 67 | 66 | adantr | |- ( ( ( ph /\ k e. NN0 ) /\ k < N ) -> ( ( ( F ` ( k + 1 ) ) =/= 0 /\ ( F ` k ) <_ ( N - k ) ) -> ( F ` ( k + 1 ) ) <_ ( N - ( k + 1 ) ) ) ) |
| 68 | 67 | expdimp | |- ( ( ( ( ph /\ k e. NN0 ) /\ k < N ) /\ ( F ` ( k + 1 ) ) =/= 0 ) -> ( ( F ` k ) <_ ( N - k ) -> ( F ` ( k + 1 ) ) <_ ( N - ( k + 1 ) ) ) ) |
| 69 | 58 68 | pm2.61dane | |- ( ( ( ph /\ k e. NN0 ) /\ k < N ) -> ( ( F ` k ) <_ ( N - k ) -> ( F ` ( k + 1 ) ) <_ ( N - ( k + 1 ) ) ) ) |
| 70 | 69 | anasss | |- ( ( ph /\ ( k e. NN0 /\ k < N ) ) -> ( ( F ` k ) <_ ( N - k ) -> ( F ` ( k + 1 ) ) <_ ( N - ( k + 1 ) ) ) ) |
| 71 | 70 | expcom | |- ( ( k e. NN0 /\ k < N ) -> ( ph -> ( ( F ` k ) <_ ( N - k ) -> ( F ` ( k + 1 ) ) <_ ( N - ( k + 1 ) ) ) ) ) |
| 72 | 71 | a2d | |- ( ( k e. NN0 /\ k < N ) -> ( ( ph -> ( F ` k ) <_ ( N - k ) ) -> ( ph -> ( F ` ( k + 1 ) ) <_ ( N - ( k + 1 ) ) ) ) ) |
| 73 | 72 | 3adant1 | |- ( ( N e. NN0 /\ k e. NN0 /\ k < N ) -> ( ( ph -> ( F ` k ) <_ ( N - k ) ) -> ( ph -> ( F ` ( k + 1 ) ) <_ ( N - ( k + 1 ) ) ) ) ) |
| 74 | 13 17 21 25 30 73 | fnn0ind | |- ( ( N e. NN0 /\ N e. NN0 /\ N <_ N ) -> ( ph -> ( F ` N ) <_ ( N - N ) ) ) |
| 75 | 7 7 9 74 | syl3anc | |- ( ph -> ( ph -> ( F ` N ) <_ ( N - N ) ) ) |
| 76 | 75 | pm2.43i | |- ( ph -> ( F ` N ) <_ ( N - N ) ) |
| 77 | 27 | subidd | |- ( ph -> ( N - N ) = 0 ) |
| 78 | 76 77 | breqtrd | |- ( ph -> ( F ` N ) <_ 0 ) |
| 79 | 1 7 | ffvelcdmd | |- ( ph -> ( F ` N ) e. NN0 ) |
| 80 | 79 | nn0ge0d | |- ( ph -> 0 <_ ( F ` N ) ) |
| 81 | 79 | nn0red | |- ( ph -> ( F ` N ) e. RR ) |
| 82 | 0re | |- 0 e. RR |
|
| 83 | letri3 | |- ( ( ( F ` N ) e. RR /\ 0 e. RR ) -> ( ( F ` N ) = 0 <-> ( ( F ` N ) <_ 0 /\ 0 <_ ( F ` N ) ) ) ) |
|
| 84 | 81 82 83 | sylancl | |- ( ph -> ( ( F ` N ) = 0 <-> ( ( F ` N ) <_ 0 /\ 0 <_ ( F ` N ) ) ) ) |
| 85 | 78 80 84 | mpbir2and | |- ( ph -> ( F ` N ) = 0 ) |