This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Law for double subtraction. (Contributed by NM, 19-Aug-2005) (Revised by Mario Carneiro, 27-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | subsub4 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 − 𝐵 ) − 𝐶 ) = ( 𝐴 − ( 𝐵 + 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nppcan2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 − ( 𝐵 + 𝐶 ) ) + 𝐶 ) = ( 𝐴 − 𝐵 ) ) | |
| 2 | simp1 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → 𝐴 ∈ ℂ ) | |
| 3 | simp2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → 𝐵 ∈ ℂ ) | |
| 4 | subcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 − 𝐵 ) ∈ ℂ ) | |
| 5 | 2 3 4 | syl2anc | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 − 𝐵 ) ∈ ℂ ) |
| 6 | simp3 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → 𝐶 ∈ ℂ ) | |
| 7 | 3 6 | addcld | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐵 + 𝐶 ) ∈ ℂ ) |
| 8 | subcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝐵 + 𝐶 ) ∈ ℂ ) → ( 𝐴 − ( 𝐵 + 𝐶 ) ) ∈ ℂ ) | |
| 9 | 2 7 8 | syl2anc | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 − ( 𝐵 + 𝐶 ) ) ∈ ℂ ) |
| 10 | subadd2 | ⊢ ( ( ( 𝐴 − 𝐵 ) ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ ( 𝐴 − ( 𝐵 + 𝐶 ) ) ∈ ℂ ) → ( ( ( 𝐴 − 𝐵 ) − 𝐶 ) = ( 𝐴 − ( 𝐵 + 𝐶 ) ) ↔ ( ( 𝐴 − ( 𝐵 + 𝐶 ) ) + 𝐶 ) = ( 𝐴 − 𝐵 ) ) ) | |
| 11 | 5 6 9 10 | syl3anc | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( ( 𝐴 − 𝐵 ) − 𝐶 ) = ( 𝐴 − ( 𝐵 + 𝐶 ) ) ↔ ( ( 𝐴 − ( 𝐵 + 𝐶 ) ) + 𝐶 ) = ( 𝐴 − 𝐵 ) ) ) |
| 12 | 1 11 | mpbird | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 − 𝐵 ) − 𝐶 ) = ( 𝐴 − ( 𝐵 + 𝐶 ) ) ) |