This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any subgroup is a normal subgroup of its normalizer. (Contributed by Mario Carneiro, 19-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | elnmz.1 | ⊢ 𝑁 = { 𝑥 ∈ 𝑋 ∣ ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 + 𝑦 ) ∈ 𝑆 ↔ ( 𝑦 + 𝑥 ) ∈ 𝑆 ) } | |
| nmzsubg.2 | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | ||
| nmzsubg.3 | ⊢ + = ( +g ‘ 𝐺 ) | ||
| nmznsg.4 | ⊢ 𝐻 = ( 𝐺 ↾s 𝑁 ) | ||
| Assertion | nmznsg | ⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝑆 ∈ ( NrmSGrp ‘ 𝐻 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elnmz.1 | ⊢ 𝑁 = { 𝑥 ∈ 𝑋 ∣ ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 + 𝑦 ) ∈ 𝑆 ↔ ( 𝑦 + 𝑥 ) ∈ 𝑆 ) } | |
| 2 | nmzsubg.2 | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| 3 | nmzsubg.3 | ⊢ + = ( +g ‘ 𝐺 ) | |
| 4 | nmznsg.4 | ⊢ 𝐻 = ( 𝐺 ↾s 𝑁 ) | |
| 5 | id | ⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) | |
| 6 | 1 2 3 | ssnmz | ⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝑆 ⊆ 𝑁 ) |
| 7 | subgrcl | ⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝐺 ∈ Grp ) | |
| 8 | 1 2 3 | nmzsubg | ⊢ ( 𝐺 ∈ Grp → 𝑁 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 9 | 7 8 | syl | ⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝑁 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 10 | 4 | subsubg | ⊢ ( 𝑁 ∈ ( SubGrp ‘ 𝐺 ) → ( 𝑆 ∈ ( SubGrp ‘ 𝐻 ) ↔ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ⊆ 𝑁 ) ) ) |
| 11 | 9 10 | syl | ⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → ( 𝑆 ∈ ( SubGrp ‘ 𝐻 ) ↔ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ⊆ 𝑁 ) ) ) |
| 12 | 5 6 11 | mpbir2and | ⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝑆 ∈ ( SubGrp ‘ 𝐻 ) ) |
| 13 | 1 | ssrab3 | ⊢ 𝑁 ⊆ 𝑋 |
| 14 | 13 | sseli | ⊢ ( 𝑤 ∈ 𝑁 → 𝑤 ∈ 𝑋 ) |
| 15 | 1 | nmzbi | ⊢ ( ( 𝑧 ∈ 𝑁 ∧ 𝑤 ∈ 𝑋 ) → ( ( 𝑧 + 𝑤 ) ∈ 𝑆 ↔ ( 𝑤 + 𝑧 ) ∈ 𝑆 ) ) |
| 16 | 14 15 | sylan2 | ⊢ ( ( 𝑧 ∈ 𝑁 ∧ 𝑤 ∈ 𝑁 ) → ( ( 𝑧 + 𝑤 ) ∈ 𝑆 ↔ ( 𝑤 + 𝑧 ) ∈ 𝑆 ) ) |
| 17 | 16 | rgen2 | ⊢ ∀ 𝑧 ∈ 𝑁 ∀ 𝑤 ∈ 𝑁 ( ( 𝑧 + 𝑤 ) ∈ 𝑆 ↔ ( 𝑤 + 𝑧 ) ∈ 𝑆 ) |
| 18 | 4 | subgbas | ⊢ ( 𝑁 ∈ ( SubGrp ‘ 𝐺 ) → 𝑁 = ( Base ‘ 𝐻 ) ) |
| 19 | 9 18 | syl | ⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝑁 = ( Base ‘ 𝐻 ) ) |
| 20 | 19 | raleqdv | ⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → ( ∀ 𝑤 ∈ 𝑁 ( ( 𝑧 + 𝑤 ) ∈ 𝑆 ↔ ( 𝑤 + 𝑧 ) ∈ 𝑆 ) ↔ ∀ 𝑤 ∈ ( Base ‘ 𝐻 ) ( ( 𝑧 + 𝑤 ) ∈ 𝑆 ↔ ( 𝑤 + 𝑧 ) ∈ 𝑆 ) ) ) |
| 21 | 19 20 | raleqbidv | ⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → ( ∀ 𝑧 ∈ 𝑁 ∀ 𝑤 ∈ 𝑁 ( ( 𝑧 + 𝑤 ) ∈ 𝑆 ↔ ( 𝑤 + 𝑧 ) ∈ 𝑆 ) ↔ ∀ 𝑧 ∈ ( Base ‘ 𝐻 ) ∀ 𝑤 ∈ ( Base ‘ 𝐻 ) ( ( 𝑧 + 𝑤 ) ∈ 𝑆 ↔ ( 𝑤 + 𝑧 ) ∈ 𝑆 ) ) ) |
| 22 | 17 21 | mpbii | ⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → ∀ 𝑧 ∈ ( Base ‘ 𝐻 ) ∀ 𝑤 ∈ ( Base ‘ 𝐻 ) ( ( 𝑧 + 𝑤 ) ∈ 𝑆 ↔ ( 𝑤 + 𝑧 ) ∈ 𝑆 ) ) |
| 23 | eqid | ⊢ ( Base ‘ 𝐻 ) = ( Base ‘ 𝐻 ) | |
| 24 | 2 | fvexi | ⊢ 𝑋 ∈ V |
| 25 | 24 13 | ssexi | ⊢ 𝑁 ∈ V |
| 26 | 4 3 | ressplusg | ⊢ ( 𝑁 ∈ V → + = ( +g ‘ 𝐻 ) ) |
| 27 | 25 26 | ax-mp | ⊢ + = ( +g ‘ 𝐻 ) |
| 28 | 23 27 | isnsg | ⊢ ( 𝑆 ∈ ( NrmSGrp ‘ 𝐻 ) ↔ ( 𝑆 ∈ ( SubGrp ‘ 𝐻 ) ∧ ∀ 𝑧 ∈ ( Base ‘ 𝐻 ) ∀ 𝑤 ∈ ( Base ‘ 𝐻 ) ( ( 𝑧 + 𝑤 ) ∈ 𝑆 ↔ ( 𝑤 + 𝑧 ) ∈ 𝑆 ) ) ) |
| 29 | 12 22 28 | sylanbrc | ⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝑆 ∈ ( NrmSGrp ‘ 𝐻 ) ) |