This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Property of being a normal subgroup. (Contributed by Mario Carneiro, 18-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isnsg.1 | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| isnsg.2 | ⊢ + = ( +g ‘ 𝐺 ) | ||
| Assertion | isnsg | ⊢ ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ↔ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 + 𝑦 ) ∈ 𝑆 ↔ ( 𝑦 + 𝑥 ) ∈ 𝑆 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isnsg.1 | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| 2 | isnsg.2 | ⊢ + = ( +g ‘ 𝐺 ) | |
| 3 | df-nsg | ⊢ NrmSGrp = ( 𝑔 ∈ Grp ↦ { 𝑠 ∈ ( SubGrp ‘ 𝑔 ) ∣ [ ( Base ‘ 𝑔 ) / 𝑏 ] [ ( +g ‘ 𝑔 ) / 𝑝 ] ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ( ( 𝑥 𝑝 𝑦 ) ∈ 𝑠 ↔ ( 𝑦 𝑝 𝑥 ) ∈ 𝑠 ) } ) | |
| 4 | 3 | mptrcl | ⊢ ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) → 𝐺 ∈ Grp ) |
| 5 | subgrcl | ⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝐺 ∈ Grp ) | |
| 6 | 5 | adantr | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 + 𝑦 ) ∈ 𝑆 ↔ ( 𝑦 + 𝑥 ) ∈ 𝑆 ) ) → 𝐺 ∈ Grp ) |
| 7 | fveq2 | ⊢ ( 𝑔 = 𝐺 → ( SubGrp ‘ 𝑔 ) = ( SubGrp ‘ 𝐺 ) ) | |
| 8 | fvexd | ⊢ ( 𝑔 = 𝐺 → ( Base ‘ 𝑔 ) ∈ V ) | |
| 9 | fveq2 | ⊢ ( 𝑔 = 𝐺 → ( Base ‘ 𝑔 ) = ( Base ‘ 𝐺 ) ) | |
| 10 | 9 1 | eqtr4di | ⊢ ( 𝑔 = 𝐺 → ( Base ‘ 𝑔 ) = 𝑋 ) |
| 11 | fvexd | ⊢ ( ( 𝑔 = 𝐺 ∧ 𝑏 = 𝑋 ) → ( +g ‘ 𝑔 ) ∈ V ) | |
| 12 | simpl | ⊢ ( ( 𝑔 = 𝐺 ∧ 𝑏 = 𝑋 ) → 𝑔 = 𝐺 ) | |
| 13 | 12 | fveq2d | ⊢ ( ( 𝑔 = 𝐺 ∧ 𝑏 = 𝑋 ) → ( +g ‘ 𝑔 ) = ( +g ‘ 𝐺 ) ) |
| 14 | 13 2 | eqtr4di | ⊢ ( ( 𝑔 = 𝐺 ∧ 𝑏 = 𝑋 ) → ( +g ‘ 𝑔 ) = + ) |
| 15 | simplr | ⊢ ( ( ( 𝑔 = 𝐺 ∧ 𝑏 = 𝑋 ) ∧ 𝑝 = + ) → 𝑏 = 𝑋 ) | |
| 16 | simpr | ⊢ ( ( ( 𝑔 = 𝐺 ∧ 𝑏 = 𝑋 ) ∧ 𝑝 = + ) → 𝑝 = + ) | |
| 17 | 16 | oveqd | ⊢ ( ( ( 𝑔 = 𝐺 ∧ 𝑏 = 𝑋 ) ∧ 𝑝 = + ) → ( 𝑥 𝑝 𝑦 ) = ( 𝑥 + 𝑦 ) ) |
| 18 | 17 | eleq1d | ⊢ ( ( ( 𝑔 = 𝐺 ∧ 𝑏 = 𝑋 ) ∧ 𝑝 = + ) → ( ( 𝑥 𝑝 𝑦 ) ∈ 𝑠 ↔ ( 𝑥 + 𝑦 ) ∈ 𝑠 ) ) |
| 19 | 16 | oveqd | ⊢ ( ( ( 𝑔 = 𝐺 ∧ 𝑏 = 𝑋 ) ∧ 𝑝 = + ) → ( 𝑦 𝑝 𝑥 ) = ( 𝑦 + 𝑥 ) ) |
| 20 | 19 | eleq1d | ⊢ ( ( ( 𝑔 = 𝐺 ∧ 𝑏 = 𝑋 ) ∧ 𝑝 = + ) → ( ( 𝑦 𝑝 𝑥 ) ∈ 𝑠 ↔ ( 𝑦 + 𝑥 ) ∈ 𝑠 ) ) |
| 21 | 18 20 | bibi12d | ⊢ ( ( ( 𝑔 = 𝐺 ∧ 𝑏 = 𝑋 ) ∧ 𝑝 = + ) → ( ( ( 𝑥 𝑝 𝑦 ) ∈ 𝑠 ↔ ( 𝑦 𝑝 𝑥 ) ∈ 𝑠 ) ↔ ( ( 𝑥 + 𝑦 ) ∈ 𝑠 ↔ ( 𝑦 + 𝑥 ) ∈ 𝑠 ) ) ) |
| 22 | 15 21 | raleqbidv | ⊢ ( ( ( 𝑔 = 𝐺 ∧ 𝑏 = 𝑋 ) ∧ 𝑝 = + ) → ( ∀ 𝑦 ∈ 𝑏 ( ( 𝑥 𝑝 𝑦 ) ∈ 𝑠 ↔ ( 𝑦 𝑝 𝑥 ) ∈ 𝑠 ) ↔ ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 + 𝑦 ) ∈ 𝑠 ↔ ( 𝑦 + 𝑥 ) ∈ 𝑠 ) ) ) |
| 23 | 15 22 | raleqbidv | ⊢ ( ( ( 𝑔 = 𝐺 ∧ 𝑏 = 𝑋 ) ∧ 𝑝 = + ) → ( ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ( ( 𝑥 𝑝 𝑦 ) ∈ 𝑠 ↔ ( 𝑦 𝑝 𝑥 ) ∈ 𝑠 ) ↔ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 + 𝑦 ) ∈ 𝑠 ↔ ( 𝑦 + 𝑥 ) ∈ 𝑠 ) ) ) |
| 24 | 11 14 23 | sbcied2 | ⊢ ( ( 𝑔 = 𝐺 ∧ 𝑏 = 𝑋 ) → ( [ ( +g ‘ 𝑔 ) / 𝑝 ] ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ( ( 𝑥 𝑝 𝑦 ) ∈ 𝑠 ↔ ( 𝑦 𝑝 𝑥 ) ∈ 𝑠 ) ↔ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 + 𝑦 ) ∈ 𝑠 ↔ ( 𝑦 + 𝑥 ) ∈ 𝑠 ) ) ) |
| 25 | 8 10 24 | sbcied2 | ⊢ ( 𝑔 = 𝐺 → ( [ ( Base ‘ 𝑔 ) / 𝑏 ] [ ( +g ‘ 𝑔 ) / 𝑝 ] ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ( ( 𝑥 𝑝 𝑦 ) ∈ 𝑠 ↔ ( 𝑦 𝑝 𝑥 ) ∈ 𝑠 ) ↔ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 + 𝑦 ) ∈ 𝑠 ↔ ( 𝑦 + 𝑥 ) ∈ 𝑠 ) ) ) |
| 26 | 7 25 | rabeqbidv | ⊢ ( 𝑔 = 𝐺 → { 𝑠 ∈ ( SubGrp ‘ 𝑔 ) ∣ [ ( Base ‘ 𝑔 ) / 𝑏 ] [ ( +g ‘ 𝑔 ) / 𝑝 ] ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ( ( 𝑥 𝑝 𝑦 ) ∈ 𝑠 ↔ ( 𝑦 𝑝 𝑥 ) ∈ 𝑠 ) } = { 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ∣ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 + 𝑦 ) ∈ 𝑠 ↔ ( 𝑦 + 𝑥 ) ∈ 𝑠 ) } ) |
| 27 | fvex | ⊢ ( SubGrp ‘ 𝐺 ) ∈ V | |
| 28 | 27 | rabex | ⊢ { 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ∣ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 + 𝑦 ) ∈ 𝑠 ↔ ( 𝑦 + 𝑥 ) ∈ 𝑠 ) } ∈ V |
| 29 | 26 3 28 | fvmpt | ⊢ ( 𝐺 ∈ Grp → ( NrmSGrp ‘ 𝐺 ) = { 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ∣ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 + 𝑦 ) ∈ 𝑠 ↔ ( 𝑦 + 𝑥 ) ∈ 𝑠 ) } ) |
| 30 | 29 | eleq2d | ⊢ ( 𝐺 ∈ Grp → ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ↔ 𝑆 ∈ { 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ∣ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 + 𝑦 ) ∈ 𝑠 ↔ ( 𝑦 + 𝑥 ) ∈ 𝑠 ) } ) ) |
| 31 | eleq2 | ⊢ ( 𝑠 = 𝑆 → ( ( 𝑥 + 𝑦 ) ∈ 𝑠 ↔ ( 𝑥 + 𝑦 ) ∈ 𝑆 ) ) | |
| 32 | eleq2 | ⊢ ( 𝑠 = 𝑆 → ( ( 𝑦 + 𝑥 ) ∈ 𝑠 ↔ ( 𝑦 + 𝑥 ) ∈ 𝑆 ) ) | |
| 33 | 31 32 | bibi12d | ⊢ ( 𝑠 = 𝑆 → ( ( ( 𝑥 + 𝑦 ) ∈ 𝑠 ↔ ( 𝑦 + 𝑥 ) ∈ 𝑠 ) ↔ ( ( 𝑥 + 𝑦 ) ∈ 𝑆 ↔ ( 𝑦 + 𝑥 ) ∈ 𝑆 ) ) ) |
| 34 | 33 | 2ralbidv | ⊢ ( 𝑠 = 𝑆 → ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 + 𝑦 ) ∈ 𝑠 ↔ ( 𝑦 + 𝑥 ) ∈ 𝑠 ) ↔ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 + 𝑦 ) ∈ 𝑆 ↔ ( 𝑦 + 𝑥 ) ∈ 𝑆 ) ) ) |
| 35 | 34 | elrab | ⊢ ( 𝑆 ∈ { 𝑠 ∈ ( SubGrp ‘ 𝐺 ) ∣ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 + 𝑦 ) ∈ 𝑠 ↔ ( 𝑦 + 𝑥 ) ∈ 𝑠 ) } ↔ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 + 𝑦 ) ∈ 𝑆 ↔ ( 𝑦 + 𝑥 ) ∈ 𝑆 ) ) ) |
| 36 | 30 35 | bitrdi | ⊢ ( 𝐺 ∈ Grp → ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ↔ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 + 𝑦 ) ∈ 𝑆 ↔ ( 𝑦 + 𝑥 ) ∈ 𝑆 ) ) ) ) |
| 37 | 4 6 36 | pm5.21nii | ⊢ ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ↔ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 + 𝑦 ) ∈ 𝑆 ↔ ( 𝑦 + 𝑥 ) ∈ 𝑆 ) ) ) |