This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any subgroup is a normal subgroup of its normalizer. (Contributed by Mario Carneiro, 19-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | elnmz.1 | |- N = { x e. X | A. y e. X ( ( x .+ y ) e. S <-> ( y .+ x ) e. S ) } |
|
| nmzsubg.2 | |- X = ( Base ` G ) |
||
| nmzsubg.3 | |- .+ = ( +g ` G ) |
||
| nmznsg.4 | |- H = ( G |`s N ) |
||
| Assertion | nmznsg | |- ( S e. ( SubGrp ` G ) -> S e. ( NrmSGrp ` H ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elnmz.1 | |- N = { x e. X | A. y e. X ( ( x .+ y ) e. S <-> ( y .+ x ) e. S ) } |
|
| 2 | nmzsubg.2 | |- X = ( Base ` G ) |
|
| 3 | nmzsubg.3 | |- .+ = ( +g ` G ) |
|
| 4 | nmznsg.4 | |- H = ( G |`s N ) |
|
| 5 | id | |- ( S e. ( SubGrp ` G ) -> S e. ( SubGrp ` G ) ) |
|
| 6 | 1 2 3 | ssnmz | |- ( S e. ( SubGrp ` G ) -> S C_ N ) |
| 7 | subgrcl | |- ( S e. ( SubGrp ` G ) -> G e. Grp ) |
|
| 8 | 1 2 3 | nmzsubg | |- ( G e. Grp -> N e. ( SubGrp ` G ) ) |
| 9 | 7 8 | syl | |- ( S e. ( SubGrp ` G ) -> N e. ( SubGrp ` G ) ) |
| 10 | 4 | subsubg | |- ( N e. ( SubGrp ` G ) -> ( S e. ( SubGrp ` H ) <-> ( S e. ( SubGrp ` G ) /\ S C_ N ) ) ) |
| 11 | 9 10 | syl | |- ( S e. ( SubGrp ` G ) -> ( S e. ( SubGrp ` H ) <-> ( S e. ( SubGrp ` G ) /\ S C_ N ) ) ) |
| 12 | 5 6 11 | mpbir2and | |- ( S e. ( SubGrp ` G ) -> S e. ( SubGrp ` H ) ) |
| 13 | 1 | ssrab3 | |- N C_ X |
| 14 | 13 | sseli | |- ( w e. N -> w e. X ) |
| 15 | 1 | nmzbi | |- ( ( z e. N /\ w e. X ) -> ( ( z .+ w ) e. S <-> ( w .+ z ) e. S ) ) |
| 16 | 14 15 | sylan2 | |- ( ( z e. N /\ w e. N ) -> ( ( z .+ w ) e. S <-> ( w .+ z ) e. S ) ) |
| 17 | 16 | rgen2 | |- A. z e. N A. w e. N ( ( z .+ w ) e. S <-> ( w .+ z ) e. S ) |
| 18 | 4 | subgbas | |- ( N e. ( SubGrp ` G ) -> N = ( Base ` H ) ) |
| 19 | 9 18 | syl | |- ( S e. ( SubGrp ` G ) -> N = ( Base ` H ) ) |
| 20 | 19 | raleqdv | |- ( S e. ( SubGrp ` G ) -> ( A. w e. N ( ( z .+ w ) e. S <-> ( w .+ z ) e. S ) <-> A. w e. ( Base ` H ) ( ( z .+ w ) e. S <-> ( w .+ z ) e. S ) ) ) |
| 21 | 19 20 | raleqbidv | |- ( S e. ( SubGrp ` G ) -> ( A. z e. N A. w e. N ( ( z .+ w ) e. S <-> ( w .+ z ) e. S ) <-> A. z e. ( Base ` H ) A. w e. ( Base ` H ) ( ( z .+ w ) e. S <-> ( w .+ z ) e. S ) ) ) |
| 22 | 17 21 | mpbii | |- ( S e. ( SubGrp ` G ) -> A. z e. ( Base ` H ) A. w e. ( Base ` H ) ( ( z .+ w ) e. S <-> ( w .+ z ) e. S ) ) |
| 23 | eqid | |- ( Base ` H ) = ( Base ` H ) |
|
| 24 | 2 | fvexi | |- X e. _V |
| 25 | 24 13 | ssexi | |- N e. _V |
| 26 | 4 3 | ressplusg | |- ( N e. _V -> .+ = ( +g ` H ) ) |
| 27 | 25 26 | ax-mp | |- .+ = ( +g ` H ) |
| 28 | 23 27 | isnsg | |- ( S e. ( NrmSGrp ` H ) <-> ( S e. ( SubGrp ` H ) /\ A. z e. ( Base ` H ) A. w e. ( Base ` H ) ( ( z .+ w ) e. S <-> ( w .+ z ) e. S ) ) ) |
| 29 | 12 22 28 | sylanbrc | |- ( S e. ( SubGrp ` G ) -> S e. ( NrmSGrp ` H ) ) |