This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for nmpar . (Contributed by Mario Carneiro, 7-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nmpar.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| nmpar.p | ⊢ + = ( +g ‘ 𝑊 ) | ||
| nmpar.m | ⊢ − = ( -g ‘ 𝑊 ) | ||
| nmpar.n | ⊢ 𝑁 = ( norm ‘ 𝑊 ) | ||
| nmpar.h | ⊢ , = ( ·𝑖 ‘ 𝑊 ) | ||
| nmpar.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | ||
| nmpar.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | ||
| nmpar.1 | ⊢ ( 𝜑 → 𝑊 ∈ ℂPreHil ) | ||
| nmpar.2 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | ||
| nmpar.3 | ⊢ ( 𝜑 → 𝐵 ∈ 𝑉 ) | ||
| Assertion | nmparlem | ⊢ ( 𝜑 → ( ( ( 𝑁 ‘ ( 𝐴 + 𝐵 ) ) ↑ 2 ) + ( ( 𝑁 ‘ ( 𝐴 − 𝐵 ) ) ↑ 2 ) ) = ( 2 · ( ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) + ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmpar.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | nmpar.p | ⊢ + = ( +g ‘ 𝑊 ) | |
| 3 | nmpar.m | ⊢ − = ( -g ‘ 𝑊 ) | |
| 4 | nmpar.n | ⊢ 𝑁 = ( norm ‘ 𝑊 ) | |
| 5 | nmpar.h | ⊢ , = ( ·𝑖 ‘ 𝑊 ) | |
| 6 | nmpar.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| 7 | nmpar.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | |
| 8 | nmpar.1 | ⊢ ( 𝜑 → 𝑊 ∈ ℂPreHil ) | |
| 9 | nmpar.2 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 10 | nmpar.3 | ⊢ ( 𝜑 → 𝐵 ∈ 𝑉 ) | |
| 11 | 5 1 2 8 9 10 9 10 | cph2di | ⊢ ( 𝜑 → ( ( 𝐴 + 𝐵 ) , ( 𝐴 + 𝐵 ) ) = ( ( ( 𝐴 , 𝐴 ) + ( 𝐵 , 𝐵 ) ) + ( ( 𝐴 , 𝐵 ) + ( 𝐵 , 𝐴 ) ) ) ) |
| 12 | 5 1 3 8 9 10 9 10 | cph2subdi | ⊢ ( 𝜑 → ( ( 𝐴 − 𝐵 ) , ( 𝐴 − 𝐵 ) ) = ( ( ( 𝐴 , 𝐴 ) + ( 𝐵 , 𝐵 ) ) − ( ( 𝐴 , 𝐵 ) + ( 𝐵 , 𝐴 ) ) ) ) |
| 13 | 11 12 | oveq12d | ⊢ ( 𝜑 → ( ( ( 𝐴 + 𝐵 ) , ( 𝐴 + 𝐵 ) ) + ( ( 𝐴 − 𝐵 ) , ( 𝐴 − 𝐵 ) ) ) = ( ( ( ( 𝐴 , 𝐴 ) + ( 𝐵 , 𝐵 ) ) + ( ( 𝐴 , 𝐵 ) + ( 𝐵 , 𝐴 ) ) ) + ( ( ( 𝐴 , 𝐴 ) + ( 𝐵 , 𝐵 ) ) − ( ( 𝐴 , 𝐵 ) + ( 𝐵 , 𝐴 ) ) ) ) ) |
| 14 | cphclm | ⊢ ( 𝑊 ∈ ℂPreHil → 𝑊 ∈ ℂMod ) | |
| 15 | 8 14 | syl | ⊢ ( 𝜑 → 𝑊 ∈ ℂMod ) |
| 16 | 6 7 | clmsscn | ⊢ ( 𝑊 ∈ ℂMod → 𝐾 ⊆ ℂ ) |
| 17 | 15 16 | syl | ⊢ ( 𝜑 → 𝐾 ⊆ ℂ ) |
| 18 | cphphl | ⊢ ( 𝑊 ∈ ℂPreHil → 𝑊 ∈ PreHil ) | |
| 19 | 8 18 | syl | ⊢ ( 𝜑 → 𝑊 ∈ PreHil ) |
| 20 | 6 5 1 7 | ipcl | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉 ) → ( 𝐴 , 𝐴 ) ∈ 𝐾 ) |
| 21 | 19 9 9 20 | syl3anc | ⊢ ( 𝜑 → ( 𝐴 , 𝐴 ) ∈ 𝐾 ) |
| 22 | 6 5 1 7 | ipcl | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐵 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( 𝐵 , 𝐵 ) ∈ 𝐾 ) |
| 23 | 19 10 10 22 | syl3anc | ⊢ ( 𝜑 → ( 𝐵 , 𝐵 ) ∈ 𝐾 ) |
| 24 | 6 7 | clmacl | ⊢ ( ( 𝑊 ∈ ℂMod ∧ ( 𝐴 , 𝐴 ) ∈ 𝐾 ∧ ( 𝐵 , 𝐵 ) ∈ 𝐾 ) → ( ( 𝐴 , 𝐴 ) + ( 𝐵 , 𝐵 ) ) ∈ 𝐾 ) |
| 25 | 15 21 23 24 | syl3anc | ⊢ ( 𝜑 → ( ( 𝐴 , 𝐴 ) + ( 𝐵 , 𝐵 ) ) ∈ 𝐾 ) |
| 26 | 17 25 | sseldd | ⊢ ( 𝜑 → ( ( 𝐴 , 𝐴 ) + ( 𝐵 , 𝐵 ) ) ∈ ℂ ) |
| 27 | 6 5 1 7 | ipcl | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( 𝐴 , 𝐵 ) ∈ 𝐾 ) |
| 28 | 19 9 10 27 | syl3anc | ⊢ ( 𝜑 → ( 𝐴 , 𝐵 ) ∈ 𝐾 ) |
| 29 | 6 5 1 7 | ipcl | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉 ) → ( 𝐵 , 𝐴 ) ∈ 𝐾 ) |
| 30 | 19 10 9 29 | syl3anc | ⊢ ( 𝜑 → ( 𝐵 , 𝐴 ) ∈ 𝐾 ) |
| 31 | 6 7 | clmacl | ⊢ ( ( 𝑊 ∈ ℂMod ∧ ( 𝐴 , 𝐵 ) ∈ 𝐾 ∧ ( 𝐵 , 𝐴 ) ∈ 𝐾 ) → ( ( 𝐴 , 𝐵 ) + ( 𝐵 , 𝐴 ) ) ∈ 𝐾 ) |
| 32 | 15 28 30 31 | syl3anc | ⊢ ( 𝜑 → ( ( 𝐴 , 𝐵 ) + ( 𝐵 , 𝐴 ) ) ∈ 𝐾 ) |
| 33 | 17 32 | sseldd | ⊢ ( 𝜑 → ( ( 𝐴 , 𝐵 ) + ( 𝐵 , 𝐴 ) ) ∈ ℂ ) |
| 34 | 26 33 26 | ppncand | ⊢ ( 𝜑 → ( ( ( ( 𝐴 , 𝐴 ) + ( 𝐵 , 𝐵 ) ) + ( ( 𝐴 , 𝐵 ) + ( 𝐵 , 𝐴 ) ) ) + ( ( ( 𝐴 , 𝐴 ) + ( 𝐵 , 𝐵 ) ) − ( ( 𝐴 , 𝐵 ) + ( 𝐵 , 𝐴 ) ) ) ) = ( ( ( 𝐴 , 𝐴 ) + ( 𝐵 , 𝐵 ) ) + ( ( 𝐴 , 𝐴 ) + ( 𝐵 , 𝐵 ) ) ) ) |
| 35 | 13 34 | eqtrd | ⊢ ( 𝜑 → ( ( ( 𝐴 + 𝐵 ) , ( 𝐴 + 𝐵 ) ) + ( ( 𝐴 − 𝐵 ) , ( 𝐴 − 𝐵 ) ) ) = ( ( ( 𝐴 , 𝐴 ) + ( 𝐵 , 𝐵 ) ) + ( ( 𝐴 , 𝐴 ) + ( 𝐵 , 𝐵 ) ) ) ) |
| 36 | cphlmod | ⊢ ( 𝑊 ∈ ℂPreHil → 𝑊 ∈ LMod ) | |
| 37 | 8 36 | syl | ⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
| 38 | 1 2 | lmodvacl | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( 𝐴 + 𝐵 ) ∈ 𝑉 ) |
| 39 | 37 9 10 38 | syl3anc | ⊢ ( 𝜑 → ( 𝐴 + 𝐵 ) ∈ 𝑉 ) |
| 40 | 1 5 4 | nmsq | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝐴 + 𝐵 ) ∈ 𝑉 ) → ( ( 𝑁 ‘ ( 𝐴 + 𝐵 ) ) ↑ 2 ) = ( ( 𝐴 + 𝐵 ) , ( 𝐴 + 𝐵 ) ) ) |
| 41 | 8 39 40 | syl2anc | ⊢ ( 𝜑 → ( ( 𝑁 ‘ ( 𝐴 + 𝐵 ) ) ↑ 2 ) = ( ( 𝐴 + 𝐵 ) , ( 𝐴 + 𝐵 ) ) ) |
| 42 | 1 3 | lmodvsubcl | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( 𝐴 − 𝐵 ) ∈ 𝑉 ) |
| 43 | 37 9 10 42 | syl3anc | ⊢ ( 𝜑 → ( 𝐴 − 𝐵 ) ∈ 𝑉 ) |
| 44 | 1 5 4 | nmsq | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝐴 − 𝐵 ) ∈ 𝑉 ) → ( ( 𝑁 ‘ ( 𝐴 − 𝐵 ) ) ↑ 2 ) = ( ( 𝐴 − 𝐵 ) , ( 𝐴 − 𝐵 ) ) ) |
| 45 | 8 43 44 | syl2anc | ⊢ ( 𝜑 → ( ( 𝑁 ‘ ( 𝐴 − 𝐵 ) ) ↑ 2 ) = ( ( 𝐴 − 𝐵 ) , ( 𝐴 − 𝐵 ) ) ) |
| 46 | 41 45 | oveq12d | ⊢ ( 𝜑 → ( ( ( 𝑁 ‘ ( 𝐴 + 𝐵 ) ) ↑ 2 ) + ( ( 𝑁 ‘ ( 𝐴 − 𝐵 ) ) ↑ 2 ) ) = ( ( ( 𝐴 + 𝐵 ) , ( 𝐴 + 𝐵 ) ) + ( ( 𝐴 − 𝐵 ) , ( 𝐴 − 𝐵 ) ) ) ) |
| 47 | 1 5 4 | nmsq | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉 ) → ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) = ( 𝐴 , 𝐴 ) ) |
| 48 | 8 9 47 | syl2anc | ⊢ ( 𝜑 → ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) = ( 𝐴 , 𝐴 ) ) |
| 49 | 1 5 4 | nmsq | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐵 ∈ 𝑉 ) → ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) = ( 𝐵 , 𝐵 ) ) |
| 50 | 8 10 49 | syl2anc | ⊢ ( 𝜑 → ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) = ( 𝐵 , 𝐵 ) ) |
| 51 | 48 50 | oveq12d | ⊢ ( 𝜑 → ( ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) + ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) ) = ( ( 𝐴 , 𝐴 ) + ( 𝐵 , 𝐵 ) ) ) |
| 52 | 51 | oveq2d | ⊢ ( 𝜑 → ( 2 · ( ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) + ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) ) ) = ( 2 · ( ( 𝐴 , 𝐴 ) + ( 𝐵 , 𝐵 ) ) ) ) |
| 53 | 26 | 2timesd | ⊢ ( 𝜑 → ( 2 · ( ( 𝐴 , 𝐴 ) + ( 𝐵 , 𝐵 ) ) ) = ( ( ( 𝐴 , 𝐴 ) + ( 𝐵 , 𝐵 ) ) + ( ( 𝐴 , 𝐴 ) + ( 𝐵 , 𝐵 ) ) ) ) |
| 54 | 52 53 | eqtrd | ⊢ ( 𝜑 → ( 2 · ( ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) + ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) ) ) = ( ( ( 𝐴 , 𝐴 ) + ( 𝐵 , 𝐵 ) ) + ( ( 𝐴 , 𝐴 ) + ( 𝐵 , 𝐵 ) ) ) ) |
| 55 | 35 46 54 | 3eqtr4d | ⊢ ( 𝜑 → ( ( ( 𝑁 ‘ ( 𝐴 + 𝐵 ) ) ↑ 2 ) + ( ( 𝑁 ‘ ( 𝐴 − 𝐵 ) ) ↑ 2 ) ) = ( 2 · ( ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) + ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) ) ) ) |