This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for nmpar . (Contributed by Mario Carneiro, 7-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nmpar.v | |- V = ( Base ` W ) |
|
| nmpar.p | |- .+ = ( +g ` W ) |
||
| nmpar.m | |- .- = ( -g ` W ) |
||
| nmpar.n | |- N = ( norm ` W ) |
||
| nmpar.h | |- ., = ( .i ` W ) |
||
| nmpar.f | |- F = ( Scalar ` W ) |
||
| nmpar.k | |- K = ( Base ` F ) |
||
| nmpar.1 | |- ( ph -> W e. CPreHil ) |
||
| nmpar.2 | |- ( ph -> A e. V ) |
||
| nmpar.3 | |- ( ph -> B e. V ) |
||
| Assertion | nmparlem | |- ( ph -> ( ( ( N ` ( A .+ B ) ) ^ 2 ) + ( ( N ` ( A .- B ) ) ^ 2 ) ) = ( 2 x. ( ( ( N ` A ) ^ 2 ) + ( ( N ` B ) ^ 2 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmpar.v | |- V = ( Base ` W ) |
|
| 2 | nmpar.p | |- .+ = ( +g ` W ) |
|
| 3 | nmpar.m | |- .- = ( -g ` W ) |
|
| 4 | nmpar.n | |- N = ( norm ` W ) |
|
| 5 | nmpar.h | |- ., = ( .i ` W ) |
|
| 6 | nmpar.f | |- F = ( Scalar ` W ) |
|
| 7 | nmpar.k | |- K = ( Base ` F ) |
|
| 8 | nmpar.1 | |- ( ph -> W e. CPreHil ) |
|
| 9 | nmpar.2 | |- ( ph -> A e. V ) |
|
| 10 | nmpar.3 | |- ( ph -> B e. V ) |
|
| 11 | 5 1 2 8 9 10 9 10 | cph2di | |- ( ph -> ( ( A .+ B ) ., ( A .+ B ) ) = ( ( ( A ., A ) + ( B ., B ) ) + ( ( A ., B ) + ( B ., A ) ) ) ) |
| 12 | 5 1 3 8 9 10 9 10 | cph2subdi | |- ( ph -> ( ( A .- B ) ., ( A .- B ) ) = ( ( ( A ., A ) + ( B ., B ) ) - ( ( A ., B ) + ( B ., A ) ) ) ) |
| 13 | 11 12 | oveq12d | |- ( ph -> ( ( ( A .+ B ) ., ( A .+ B ) ) + ( ( A .- B ) ., ( A .- B ) ) ) = ( ( ( ( A ., A ) + ( B ., B ) ) + ( ( A ., B ) + ( B ., A ) ) ) + ( ( ( A ., A ) + ( B ., B ) ) - ( ( A ., B ) + ( B ., A ) ) ) ) ) |
| 14 | cphclm | |- ( W e. CPreHil -> W e. CMod ) |
|
| 15 | 8 14 | syl | |- ( ph -> W e. CMod ) |
| 16 | 6 7 | clmsscn | |- ( W e. CMod -> K C_ CC ) |
| 17 | 15 16 | syl | |- ( ph -> K C_ CC ) |
| 18 | cphphl | |- ( W e. CPreHil -> W e. PreHil ) |
|
| 19 | 8 18 | syl | |- ( ph -> W e. PreHil ) |
| 20 | 6 5 1 7 | ipcl | |- ( ( W e. PreHil /\ A e. V /\ A e. V ) -> ( A ., A ) e. K ) |
| 21 | 19 9 9 20 | syl3anc | |- ( ph -> ( A ., A ) e. K ) |
| 22 | 6 5 1 7 | ipcl | |- ( ( W e. PreHil /\ B e. V /\ B e. V ) -> ( B ., B ) e. K ) |
| 23 | 19 10 10 22 | syl3anc | |- ( ph -> ( B ., B ) e. K ) |
| 24 | 6 7 | clmacl | |- ( ( W e. CMod /\ ( A ., A ) e. K /\ ( B ., B ) e. K ) -> ( ( A ., A ) + ( B ., B ) ) e. K ) |
| 25 | 15 21 23 24 | syl3anc | |- ( ph -> ( ( A ., A ) + ( B ., B ) ) e. K ) |
| 26 | 17 25 | sseldd | |- ( ph -> ( ( A ., A ) + ( B ., B ) ) e. CC ) |
| 27 | 6 5 1 7 | ipcl | |- ( ( W e. PreHil /\ A e. V /\ B e. V ) -> ( A ., B ) e. K ) |
| 28 | 19 9 10 27 | syl3anc | |- ( ph -> ( A ., B ) e. K ) |
| 29 | 6 5 1 7 | ipcl | |- ( ( W e. PreHil /\ B e. V /\ A e. V ) -> ( B ., A ) e. K ) |
| 30 | 19 10 9 29 | syl3anc | |- ( ph -> ( B ., A ) e. K ) |
| 31 | 6 7 | clmacl | |- ( ( W e. CMod /\ ( A ., B ) e. K /\ ( B ., A ) e. K ) -> ( ( A ., B ) + ( B ., A ) ) e. K ) |
| 32 | 15 28 30 31 | syl3anc | |- ( ph -> ( ( A ., B ) + ( B ., A ) ) e. K ) |
| 33 | 17 32 | sseldd | |- ( ph -> ( ( A ., B ) + ( B ., A ) ) e. CC ) |
| 34 | 26 33 26 | ppncand | |- ( ph -> ( ( ( ( A ., A ) + ( B ., B ) ) + ( ( A ., B ) + ( B ., A ) ) ) + ( ( ( A ., A ) + ( B ., B ) ) - ( ( A ., B ) + ( B ., A ) ) ) ) = ( ( ( A ., A ) + ( B ., B ) ) + ( ( A ., A ) + ( B ., B ) ) ) ) |
| 35 | 13 34 | eqtrd | |- ( ph -> ( ( ( A .+ B ) ., ( A .+ B ) ) + ( ( A .- B ) ., ( A .- B ) ) ) = ( ( ( A ., A ) + ( B ., B ) ) + ( ( A ., A ) + ( B ., B ) ) ) ) |
| 36 | cphlmod | |- ( W e. CPreHil -> W e. LMod ) |
|
| 37 | 8 36 | syl | |- ( ph -> W e. LMod ) |
| 38 | 1 2 | lmodvacl | |- ( ( W e. LMod /\ A e. V /\ B e. V ) -> ( A .+ B ) e. V ) |
| 39 | 37 9 10 38 | syl3anc | |- ( ph -> ( A .+ B ) e. V ) |
| 40 | 1 5 4 | nmsq | |- ( ( W e. CPreHil /\ ( A .+ B ) e. V ) -> ( ( N ` ( A .+ B ) ) ^ 2 ) = ( ( A .+ B ) ., ( A .+ B ) ) ) |
| 41 | 8 39 40 | syl2anc | |- ( ph -> ( ( N ` ( A .+ B ) ) ^ 2 ) = ( ( A .+ B ) ., ( A .+ B ) ) ) |
| 42 | 1 3 | lmodvsubcl | |- ( ( W e. LMod /\ A e. V /\ B e. V ) -> ( A .- B ) e. V ) |
| 43 | 37 9 10 42 | syl3anc | |- ( ph -> ( A .- B ) e. V ) |
| 44 | 1 5 4 | nmsq | |- ( ( W e. CPreHil /\ ( A .- B ) e. V ) -> ( ( N ` ( A .- B ) ) ^ 2 ) = ( ( A .- B ) ., ( A .- B ) ) ) |
| 45 | 8 43 44 | syl2anc | |- ( ph -> ( ( N ` ( A .- B ) ) ^ 2 ) = ( ( A .- B ) ., ( A .- B ) ) ) |
| 46 | 41 45 | oveq12d | |- ( ph -> ( ( ( N ` ( A .+ B ) ) ^ 2 ) + ( ( N ` ( A .- B ) ) ^ 2 ) ) = ( ( ( A .+ B ) ., ( A .+ B ) ) + ( ( A .- B ) ., ( A .- B ) ) ) ) |
| 47 | 1 5 4 | nmsq | |- ( ( W e. CPreHil /\ A e. V ) -> ( ( N ` A ) ^ 2 ) = ( A ., A ) ) |
| 48 | 8 9 47 | syl2anc | |- ( ph -> ( ( N ` A ) ^ 2 ) = ( A ., A ) ) |
| 49 | 1 5 4 | nmsq | |- ( ( W e. CPreHil /\ B e. V ) -> ( ( N ` B ) ^ 2 ) = ( B ., B ) ) |
| 50 | 8 10 49 | syl2anc | |- ( ph -> ( ( N ` B ) ^ 2 ) = ( B ., B ) ) |
| 51 | 48 50 | oveq12d | |- ( ph -> ( ( ( N ` A ) ^ 2 ) + ( ( N ` B ) ^ 2 ) ) = ( ( A ., A ) + ( B ., B ) ) ) |
| 52 | 51 | oveq2d | |- ( ph -> ( 2 x. ( ( ( N ` A ) ^ 2 ) + ( ( N ` B ) ^ 2 ) ) ) = ( 2 x. ( ( A ., A ) + ( B ., B ) ) ) ) |
| 53 | 26 | 2timesd | |- ( ph -> ( 2 x. ( ( A ., A ) + ( B ., B ) ) ) = ( ( ( A ., A ) + ( B ., B ) ) + ( ( A ., A ) + ( B ., B ) ) ) ) |
| 54 | 52 53 | eqtrd | |- ( ph -> ( 2 x. ( ( ( N ` A ) ^ 2 ) + ( ( N ` B ) ^ 2 ) ) ) = ( ( ( A ., A ) + ( B ., B ) ) + ( ( A ., A ) + ( B ., B ) ) ) ) |
| 55 | 35 46 54 | 3eqtr4d | |- ( ph -> ( ( ( N ` ( A .+ B ) ) ^ 2 ) + ( ( N ` ( A .- B ) ) ^ 2 ) ) = ( 2 x. ( ( ( N ` A ) ^ 2 ) + ( ( N ` B ) ^ 2 ) ) ) ) |