This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The square of the norm is the norm of an inner product in a subcomplex pre-Hilbert space. Equation I4 of Ponnusamy p. 362. (Contributed by NM, 1-Feb-2007) (Revised by Mario Carneiro, 7-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nmsq.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| nmsq.h | ⊢ , = ( ·𝑖 ‘ 𝑊 ) | ||
| nmsq.n | ⊢ 𝑁 = ( norm ‘ 𝑊 ) | ||
| Assertion | nmsq | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉 ) → ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) = ( 𝐴 , 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmsq.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | nmsq.h | ⊢ , = ( ·𝑖 ‘ 𝑊 ) | |
| 3 | nmsq.n | ⊢ 𝑁 = ( norm ‘ 𝑊 ) | |
| 4 | 1 2 3 | cphnm | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉 ) → ( 𝑁 ‘ 𝐴 ) = ( √ ‘ ( 𝐴 , 𝐴 ) ) ) |
| 5 | 4 | oveq1d | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉 ) → ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) = ( ( √ ‘ ( 𝐴 , 𝐴 ) ) ↑ 2 ) ) |
| 6 | 1 2 | cphipcl | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉 ) → ( 𝐴 , 𝐴 ) ∈ ℂ ) |
| 7 | 6 | 3anidm23 | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉 ) → ( 𝐴 , 𝐴 ) ∈ ℂ ) |
| 8 | 7 | sqsqrtd | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉 ) → ( ( √ ‘ ( 𝐴 , 𝐴 ) ) ↑ 2 ) = ( 𝐴 , 𝐴 ) ) |
| 9 | 5 8 | eqtrd | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉 ) → ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) = ( 𝐴 , 𝐴 ) ) |