This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Distributive law for inner product. Complex version of ip2di . (Contributed by Mario Carneiro, 16-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cphipcj.h | ⊢ , = ( ·𝑖 ‘ 𝑊 ) | |
| cphipcj.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | ||
| cphdir.P | ⊢ + = ( +g ‘ 𝑊 ) | ||
| cph2di.1 | ⊢ ( 𝜑 → 𝑊 ∈ ℂPreHil ) | ||
| cph2di.2 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | ||
| cph2di.3 | ⊢ ( 𝜑 → 𝐵 ∈ 𝑉 ) | ||
| cph2di.4 | ⊢ ( 𝜑 → 𝐶 ∈ 𝑉 ) | ||
| cph2di.5 | ⊢ ( 𝜑 → 𝐷 ∈ 𝑉 ) | ||
| Assertion | cph2di | ⊢ ( 𝜑 → ( ( 𝐴 + 𝐵 ) , ( 𝐶 + 𝐷 ) ) = ( ( ( 𝐴 , 𝐶 ) + ( 𝐵 , 𝐷 ) ) + ( ( 𝐴 , 𝐷 ) + ( 𝐵 , 𝐶 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cphipcj.h | ⊢ , = ( ·𝑖 ‘ 𝑊 ) | |
| 2 | cphipcj.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 3 | cphdir.P | ⊢ + = ( +g ‘ 𝑊 ) | |
| 4 | cph2di.1 | ⊢ ( 𝜑 → 𝑊 ∈ ℂPreHil ) | |
| 5 | cph2di.2 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 6 | cph2di.3 | ⊢ ( 𝜑 → 𝐵 ∈ 𝑉 ) | |
| 7 | cph2di.4 | ⊢ ( 𝜑 → 𝐶 ∈ 𝑉 ) | |
| 8 | cph2di.5 | ⊢ ( 𝜑 → 𝐷 ∈ 𝑉 ) | |
| 9 | eqid | ⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) | |
| 10 | eqid | ⊢ ( +g ‘ ( Scalar ‘ 𝑊 ) ) = ( +g ‘ ( Scalar ‘ 𝑊 ) ) | |
| 11 | cphphl | ⊢ ( 𝑊 ∈ ℂPreHil → 𝑊 ∈ PreHil ) | |
| 12 | 4 11 | syl | ⊢ ( 𝜑 → 𝑊 ∈ PreHil ) |
| 13 | 9 1 2 3 10 12 5 6 7 8 | ip2di | ⊢ ( 𝜑 → ( ( 𝐴 + 𝐵 ) , ( 𝐶 + 𝐷 ) ) = ( ( ( 𝐴 , 𝐶 ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 𝐵 , 𝐷 ) ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( ( 𝐴 , 𝐷 ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 𝐵 , 𝐶 ) ) ) ) |
| 14 | cphclm | ⊢ ( 𝑊 ∈ ℂPreHil → 𝑊 ∈ ℂMod ) | |
| 15 | 9 | clmadd | ⊢ ( 𝑊 ∈ ℂMod → + = ( +g ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 16 | 4 14 15 | 3syl | ⊢ ( 𝜑 → + = ( +g ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 17 | 16 | oveqd | ⊢ ( 𝜑 → ( ( 𝐴 , 𝐶 ) + ( 𝐵 , 𝐷 ) ) = ( ( 𝐴 , 𝐶 ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 𝐵 , 𝐷 ) ) ) |
| 18 | 16 | oveqd | ⊢ ( 𝜑 → ( ( 𝐴 , 𝐷 ) + ( 𝐵 , 𝐶 ) ) = ( ( 𝐴 , 𝐷 ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 𝐵 , 𝐶 ) ) ) |
| 19 | 16 17 18 | oveq123d | ⊢ ( 𝜑 → ( ( ( 𝐴 , 𝐶 ) + ( 𝐵 , 𝐷 ) ) + ( ( 𝐴 , 𝐷 ) + ( 𝐵 , 𝐶 ) ) ) = ( ( ( 𝐴 , 𝐶 ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 𝐵 , 𝐷 ) ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( ( 𝐴 , 𝐷 ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 𝐵 , 𝐶 ) ) ) ) |
| 20 | 13 19 | eqtr4d | ⊢ ( 𝜑 → ( ( 𝐴 + 𝐵 ) , ( 𝐶 + 𝐷 ) ) = ( ( ( 𝐴 , 𝐶 ) + ( 𝐵 , 𝐷 ) ) + ( ( 𝐴 , 𝐷 ) + ( 𝐵 , 𝐶 ) ) ) ) |