This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Distributive law for inner product subtraction. Complex version of ip2subdi . (Contributed by Mario Carneiro, 16-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cphipcj.h | ⊢ , = ( ·𝑖 ‘ 𝑊 ) | |
| cphipcj.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | ||
| cphsubdir.m | ⊢ − = ( -g ‘ 𝑊 ) | ||
| cph2subdi.1 | ⊢ ( 𝜑 → 𝑊 ∈ ℂPreHil ) | ||
| cph2subdi.2 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | ||
| cph2subdi.3 | ⊢ ( 𝜑 → 𝐵 ∈ 𝑉 ) | ||
| cph2subdi.4 | ⊢ ( 𝜑 → 𝐶 ∈ 𝑉 ) | ||
| cph2subdi.5 | ⊢ ( 𝜑 → 𝐷 ∈ 𝑉 ) | ||
| Assertion | cph2subdi | ⊢ ( 𝜑 → ( ( 𝐴 − 𝐵 ) , ( 𝐶 − 𝐷 ) ) = ( ( ( 𝐴 , 𝐶 ) + ( 𝐵 , 𝐷 ) ) − ( ( 𝐴 , 𝐷 ) + ( 𝐵 , 𝐶 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cphipcj.h | ⊢ , = ( ·𝑖 ‘ 𝑊 ) | |
| 2 | cphipcj.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 3 | cphsubdir.m | ⊢ − = ( -g ‘ 𝑊 ) | |
| 4 | cph2subdi.1 | ⊢ ( 𝜑 → 𝑊 ∈ ℂPreHil ) | |
| 5 | cph2subdi.2 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 6 | cph2subdi.3 | ⊢ ( 𝜑 → 𝐵 ∈ 𝑉 ) | |
| 7 | cph2subdi.4 | ⊢ ( 𝜑 → 𝐶 ∈ 𝑉 ) | |
| 8 | cph2subdi.5 | ⊢ ( 𝜑 → 𝐷 ∈ 𝑉 ) | |
| 9 | cphclm | ⊢ ( 𝑊 ∈ ℂPreHil → 𝑊 ∈ ℂMod ) | |
| 10 | 4 9 | syl | ⊢ ( 𝜑 → 𝑊 ∈ ℂMod ) |
| 11 | eqid | ⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) | |
| 12 | 11 | clmadd | ⊢ ( 𝑊 ∈ ℂMod → + = ( +g ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 13 | 10 12 | syl | ⊢ ( 𝜑 → + = ( +g ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 14 | 13 | oveqd | ⊢ ( 𝜑 → ( ( 𝐴 , 𝐶 ) + ( 𝐵 , 𝐷 ) ) = ( ( 𝐴 , 𝐶 ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 𝐵 , 𝐷 ) ) ) |
| 15 | 13 | oveqd | ⊢ ( 𝜑 → ( ( 𝐴 , 𝐷 ) + ( 𝐵 , 𝐶 ) ) = ( ( 𝐴 , 𝐷 ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 𝐵 , 𝐶 ) ) ) |
| 16 | 14 15 | oveq12d | ⊢ ( 𝜑 → ( ( ( 𝐴 , 𝐶 ) + ( 𝐵 , 𝐷 ) ) ( -g ‘ ( Scalar ‘ 𝑊 ) ) ( ( 𝐴 , 𝐷 ) + ( 𝐵 , 𝐶 ) ) ) = ( ( ( 𝐴 , 𝐶 ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 𝐵 , 𝐷 ) ) ( -g ‘ ( Scalar ‘ 𝑊 ) ) ( ( 𝐴 , 𝐷 ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 𝐵 , 𝐶 ) ) ) ) |
| 17 | cphphl | ⊢ ( 𝑊 ∈ ℂPreHil → 𝑊 ∈ PreHil ) | |
| 18 | 4 17 | syl | ⊢ ( 𝜑 → 𝑊 ∈ PreHil ) |
| 19 | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) | |
| 20 | 11 1 2 19 | ipcl | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) → ( 𝐴 , 𝐶 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 21 | 18 5 7 20 | syl3anc | ⊢ ( 𝜑 → ( 𝐴 , 𝐶 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 22 | 11 1 2 19 | ipcl | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐵 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) → ( 𝐵 , 𝐷 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 23 | 18 6 8 22 | syl3anc | ⊢ ( 𝜑 → ( 𝐵 , 𝐷 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 24 | 11 19 | clmacl | ⊢ ( ( 𝑊 ∈ ℂMod ∧ ( 𝐴 , 𝐶 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ ( 𝐵 , 𝐷 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) → ( ( 𝐴 , 𝐶 ) + ( 𝐵 , 𝐷 ) ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 25 | 10 21 23 24 | syl3anc | ⊢ ( 𝜑 → ( ( 𝐴 , 𝐶 ) + ( 𝐵 , 𝐷 ) ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 26 | 11 1 2 19 | ipcl | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) → ( 𝐴 , 𝐷 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 27 | 18 5 8 26 | syl3anc | ⊢ ( 𝜑 → ( 𝐴 , 𝐷 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 28 | 11 1 2 19 | ipcl | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) → ( 𝐵 , 𝐶 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 29 | 18 6 7 28 | syl3anc | ⊢ ( 𝜑 → ( 𝐵 , 𝐶 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 30 | 11 19 | clmacl | ⊢ ( ( 𝑊 ∈ ℂMod ∧ ( 𝐴 , 𝐷 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ ( 𝐵 , 𝐶 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) → ( ( 𝐴 , 𝐷 ) + ( 𝐵 , 𝐶 ) ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 31 | 10 27 29 30 | syl3anc | ⊢ ( 𝜑 → ( ( 𝐴 , 𝐷 ) + ( 𝐵 , 𝐶 ) ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 32 | 11 19 | clmsub | ⊢ ( ( 𝑊 ∈ ℂMod ∧ ( ( 𝐴 , 𝐶 ) + ( 𝐵 , 𝐷 ) ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ ( ( 𝐴 , 𝐷 ) + ( 𝐵 , 𝐶 ) ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) → ( ( ( 𝐴 , 𝐶 ) + ( 𝐵 , 𝐷 ) ) − ( ( 𝐴 , 𝐷 ) + ( 𝐵 , 𝐶 ) ) ) = ( ( ( 𝐴 , 𝐶 ) + ( 𝐵 , 𝐷 ) ) ( -g ‘ ( Scalar ‘ 𝑊 ) ) ( ( 𝐴 , 𝐷 ) + ( 𝐵 , 𝐶 ) ) ) ) |
| 33 | 10 25 31 32 | syl3anc | ⊢ ( 𝜑 → ( ( ( 𝐴 , 𝐶 ) + ( 𝐵 , 𝐷 ) ) − ( ( 𝐴 , 𝐷 ) + ( 𝐵 , 𝐶 ) ) ) = ( ( ( 𝐴 , 𝐶 ) + ( 𝐵 , 𝐷 ) ) ( -g ‘ ( Scalar ‘ 𝑊 ) ) ( ( 𝐴 , 𝐷 ) + ( 𝐵 , 𝐶 ) ) ) ) |
| 34 | eqid | ⊢ ( -g ‘ ( Scalar ‘ 𝑊 ) ) = ( -g ‘ ( Scalar ‘ 𝑊 ) ) | |
| 35 | eqid | ⊢ ( +g ‘ ( Scalar ‘ 𝑊 ) ) = ( +g ‘ ( Scalar ‘ 𝑊 ) ) | |
| 36 | 11 1 2 3 34 35 18 5 6 7 8 | ip2subdi | ⊢ ( 𝜑 → ( ( 𝐴 − 𝐵 ) , ( 𝐶 − 𝐷 ) ) = ( ( ( 𝐴 , 𝐶 ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 𝐵 , 𝐷 ) ) ( -g ‘ ( Scalar ‘ 𝑊 ) ) ( ( 𝐴 , 𝐷 ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 𝐵 , 𝐶 ) ) ) ) |
| 37 | 16 33 36 | 3eqtr4rd | ⊢ ( 𝜑 → ( ( 𝐴 − 𝐵 ) , ( 𝐶 − 𝐷 ) ) = ( ( ( 𝐴 , 𝐶 ) + ( 𝐵 , 𝐷 ) ) − ( ( 𝐴 , 𝐷 ) + ( 𝐵 , 𝐶 ) ) ) ) |