This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subcomplex pre-Hilbert space satisfies the parallelogram law. (Contributed by Mario Carneiro, 7-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nmpar.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| nmpar.p | ⊢ + = ( +g ‘ 𝑊 ) | ||
| nmpar.m | ⊢ − = ( -g ‘ 𝑊 ) | ||
| nmpar.n | ⊢ 𝑁 = ( norm ‘ 𝑊 ) | ||
| Assertion | nmpar | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( ( ( 𝑁 ‘ ( 𝐴 + 𝐵 ) ) ↑ 2 ) + ( ( 𝑁 ‘ ( 𝐴 − 𝐵 ) ) ↑ 2 ) ) = ( 2 · ( ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) + ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmpar.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | nmpar.p | ⊢ + = ( +g ‘ 𝑊 ) | |
| 3 | nmpar.m | ⊢ − = ( -g ‘ 𝑊 ) | |
| 4 | nmpar.n | ⊢ 𝑁 = ( norm ‘ 𝑊 ) | |
| 5 | eqid | ⊢ ( ·𝑖 ‘ 𝑊 ) = ( ·𝑖 ‘ 𝑊 ) | |
| 6 | eqid | ⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) | |
| 7 | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) | |
| 8 | simp1 | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → 𝑊 ∈ ℂPreHil ) | |
| 9 | simp2 | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → 𝐴 ∈ 𝑉 ) | |
| 10 | simp3 | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → 𝐵 ∈ 𝑉 ) | |
| 11 | 1 2 3 4 5 6 7 8 9 10 | nmparlem | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( ( ( 𝑁 ‘ ( 𝐴 + 𝐵 ) ) ↑ 2 ) + ( ( 𝑁 ‘ ( 𝐴 − 𝐵 ) ) ↑ 2 ) ) = ( 2 · ( ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) + ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) ) ) ) |