This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for nmcopexi and nmcfnexi . The norm of a continuous linear Hilbert space operator or functional exists. Theorem 3.5(i) of Beran p. 99. (Contributed by Mario Carneiro, 17-Nov-2013) (Proof shortened by Mario Carneiro, 23-Dec-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nmcex.1 | ⊢ ∃ 𝑦 ∈ ℝ+ ∀ 𝑧 ∈ ℋ ( ( normℎ ‘ 𝑧 ) < 𝑦 → ( 𝑁 ‘ ( 𝑇 ‘ 𝑧 ) ) < 1 ) | |
| nmcex.2 | ⊢ ( 𝑆 ‘ 𝑇 ) = sup ( { 𝑚 ∣ ∃ 𝑥 ∈ ℋ ( ( normℎ ‘ 𝑥 ) ≤ 1 ∧ 𝑚 = ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) } , ℝ* , < ) | ||
| nmcex.3 | ⊢ ( 𝑥 ∈ ℋ → ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ∈ ℝ ) | ||
| nmcex.4 | ⊢ ( 𝑁 ‘ ( 𝑇 ‘ 0ℎ ) ) = 0 | ||
| nmcex.5 | ⊢ ( ( ( 𝑦 / 2 ) ∈ ℝ+ ∧ 𝑥 ∈ ℋ ) → ( ( 𝑦 / 2 ) · ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) = ( 𝑁 ‘ ( 𝑇 ‘ ( ( 𝑦 / 2 ) ·ℎ 𝑥 ) ) ) ) | ||
| Assertion | nmcexi | ⊢ ( 𝑆 ‘ 𝑇 ) ∈ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmcex.1 | ⊢ ∃ 𝑦 ∈ ℝ+ ∀ 𝑧 ∈ ℋ ( ( normℎ ‘ 𝑧 ) < 𝑦 → ( 𝑁 ‘ ( 𝑇 ‘ 𝑧 ) ) < 1 ) | |
| 2 | nmcex.2 | ⊢ ( 𝑆 ‘ 𝑇 ) = sup ( { 𝑚 ∣ ∃ 𝑥 ∈ ℋ ( ( normℎ ‘ 𝑥 ) ≤ 1 ∧ 𝑚 = ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) } , ℝ* , < ) | |
| 3 | nmcex.3 | ⊢ ( 𝑥 ∈ ℋ → ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ∈ ℝ ) | |
| 4 | nmcex.4 | ⊢ ( 𝑁 ‘ ( 𝑇 ‘ 0ℎ ) ) = 0 | |
| 5 | nmcex.5 | ⊢ ( ( ( 𝑦 / 2 ) ∈ ℝ+ ∧ 𝑥 ∈ ℋ ) → ( ( 𝑦 / 2 ) · ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) = ( 𝑁 ‘ ( 𝑇 ‘ ( ( 𝑦 / 2 ) ·ℎ 𝑥 ) ) ) ) | |
| 6 | eleq1 | ⊢ ( 𝑚 = ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) → ( 𝑚 ∈ ℝ ↔ ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ∈ ℝ ) ) | |
| 7 | 3 6 | syl5ibrcom | ⊢ ( 𝑥 ∈ ℋ → ( 𝑚 = ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) → 𝑚 ∈ ℝ ) ) |
| 8 | 7 | imp | ⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑚 = ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) → 𝑚 ∈ ℝ ) |
| 9 | 8 | adantrl | ⊢ ( ( 𝑥 ∈ ℋ ∧ ( ( normℎ ‘ 𝑥 ) ≤ 1 ∧ 𝑚 = ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) ) → 𝑚 ∈ ℝ ) |
| 10 | 9 | rexlimiva | ⊢ ( ∃ 𝑥 ∈ ℋ ( ( normℎ ‘ 𝑥 ) ≤ 1 ∧ 𝑚 = ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) → 𝑚 ∈ ℝ ) |
| 11 | 10 | abssi | ⊢ { 𝑚 ∣ ∃ 𝑥 ∈ ℋ ( ( normℎ ‘ 𝑥 ) ≤ 1 ∧ 𝑚 = ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) } ⊆ ℝ |
| 12 | ax-hv0cl | ⊢ 0ℎ ∈ ℋ | |
| 13 | norm0 | ⊢ ( normℎ ‘ 0ℎ ) = 0 | |
| 14 | 0le1 | ⊢ 0 ≤ 1 | |
| 15 | 13 14 | eqbrtri | ⊢ ( normℎ ‘ 0ℎ ) ≤ 1 |
| 16 | 4 | eqcomi | ⊢ 0 = ( 𝑁 ‘ ( 𝑇 ‘ 0ℎ ) ) |
| 17 | 15 16 | pm3.2i | ⊢ ( ( normℎ ‘ 0ℎ ) ≤ 1 ∧ 0 = ( 𝑁 ‘ ( 𝑇 ‘ 0ℎ ) ) ) |
| 18 | fveq2 | ⊢ ( 𝑥 = 0ℎ → ( normℎ ‘ 𝑥 ) = ( normℎ ‘ 0ℎ ) ) | |
| 19 | 18 | breq1d | ⊢ ( 𝑥 = 0ℎ → ( ( normℎ ‘ 𝑥 ) ≤ 1 ↔ ( normℎ ‘ 0ℎ ) ≤ 1 ) ) |
| 20 | 2fveq3 | ⊢ ( 𝑥 = 0ℎ → ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) = ( 𝑁 ‘ ( 𝑇 ‘ 0ℎ ) ) ) | |
| 21 | 20 | eqeq2d | ⊢ ( 𝑥 = 0ℎ → ( 0 = ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ↔ 0 = ( 𝑁 ‘ ( 𝑇 ‘ 0ℎ ) ) ) ) |
| 22 | 19 21 | anbi12d | ⊢ ( 𝑥 = 0ℎ → ( ( ( normℎ ‘ 𝑥 ) ≤ 1 ∧ 0 = ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) ↔ ( ( normℎ ‘ 0ℎ ) ≤ 1 ∧ 0 = ( 𝑁 ‘ ( 𝑇 ‘ 0ℎ ) ) ) ) ) |
| 23 | 22 | rspcev | ⊢ ( ( 0ℎ ∈ ℋ ∧ ( ( normℎ ‘ 0ℎ ) ≤ 1 ∧ 0 = ( 𝑁 ‘ ( 𝑇 ‘ 0ℎ ) ) ) ) → ∃ 𝑥 ∈ ℋ ( ( normℎ ‘ 𝑥 ) ≤ 1 ∧ 0 = ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) ) |
| 24 | 12 17 23 | mp2an | ⊢ ∃ 𝑥 ∈ ℋ ( ( normℎ ‘ 𝑥 ) ≤ 1 ∧ 0 = ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) |
| 25 | c0ex | ⊢ 0 ∈ V | |
| 26 | eqeq1 | ⊢ ( 𝑚 = 0 → ( 𝑚 = ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ↔ 0 = ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) ) | |
| 27 | 26 | anbi2d | ⊢ ( 𝑚 = 0 → ( ( ( normℎ ‘ 𝑥 ) ≤ 1 ∧ 𝑚 = ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) ↔ ( ( normℎ ‘ 𝑥 ) ≤ 1 ∧ 0 = ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) ) ) |
| 28 | 27 | rexbidv | ⊢ ( 𝑚 = 0 → ( ∃ 𝑥 ∈ ℋ ( ( normℎ ‘ 𝑥 ) ≤ 1 ∧ 𝑚 = ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) ↔ ∃ 𝑥 ∈ ℋ ( ( normℎ ‘ 𝑥 ) ≤ 1 ∧ 0 = ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) ) ) |
| 29 | 25 28 | elab | ⊢ ( 0 ∈ { 𝑚 ∣ ∃ 𝑥 ∈ ℋ ( ( normℎ ‘ 𝑥 ) ≤ 1 ∧ 𝑚 = ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) } ↔ ∃ 𝑥 ∈ ℋ ( ( normℎ ‘ 𝑥 ) ≤ 1 ∧ 0 = ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) ) |
| 30 | 24 29 | mpbir | ⊢ 0 ∈ { 𝑚 ∣ ∃ 𝑥 ∈ ℋ ( ( normℎ ‘ 𝑥 ) ≤ 1 ∧ 𝑚 = ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) } |
| 31 | 30 | ne0ii | ⊢ { 𝑚 ∣ ∃ 𝑥 ∈ ℋ ( ( normℎ ‘ 𝑥 ) ≤ 1 ∧ 𝑚 = ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) } ≠ ∅ |
| 32 | 2rp | ⊢ 2 ∈ ℝ+ | |
| 33 | rpdivcl | ⊢ ( ( 2 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+ ) → ( 2 / 𝑦 ) ∈ ℝ+ ) | |
| 34 | 32 33 | mpan | ⊢ ( 𝑦 ∈ ℝ+ → ( 2 / 𝑦 ) ∈ ℝ+ ) |
| 35 | 34 | rpred | ⊢ ( 𝑦 ∈ ℝ+ → ( 2 / 𝑦 ) ∈ ℝ ) |
| 36 | 35 | adantr | ⊢ ( ( 𝑦 ∈ ℝ+ ∧ ∀ 𝑧 ∈ ℋ ( ( normℎ ‘ 𝑧 ) < 𝑦 → ( 𝑁 ‘ ( 𝑇 ‘ 𝑧 ) ) < 1 ) ) → ( 2 / 𝑦 ) ∈ ℝ ) |
| 37 | rpre | ⊢ ( 𝑦 ∈ ℝ+ → 𝑦 ∈ ℝ ) | |
| 38 | 37 | adantr | ⊢ ( ( 𝑦 ∈ ℝ+ ∧ ( 𝑥 ∈ ℋ ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) ) → 𝑦 ∈ ℝ ) |
| 39 | 38 | rehalfcld | ⊢ ( ( 𝑦 ∈ ℝ+ ∧ ( 𝑥 ∈ ℋ ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) ) → ( 𝑦 / 2 ) ∈ ℝ ) |
| 40 | 39 | recnd | ⊢ ( ( 𝑦 ∈ ℝ+ ∧ ( 𝑥 ∈ ℋ ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) ) → ( 𝑦 / 2 ) ∈ ℂ ) |
| 41 | simprl | ⊢ ( ( 𝑦 ∈ ℝ+ ∧ ( 𝑥 ∈ ℋ ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) ) → 𝑥 ∈ ℋ ) | |
| 42 | hvmulcl | ⊢ ( ( ( 𝑦 / 2 ) ∈ ℂ ∧ 𝑥 ∈ ℋ ) → ( ( 𝑦 / 2 ) ·ℎ 𝑥 ) ∈ ℋ ) | |
| 43 | 40 41 42 | syl2anc | ⊢ ( ( 𝑦 ∈ ℝ+ ∧ ( 𝑥 ∈ ℋ ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) ) → ( ( 𝑦 / 2 ) ·ℎ 𝑥 ) ∈ ℋ ) |
| 44 | normcl | ⊢ ( ( ( 𝑦 / 2 ) ·ℎ 𝑥 ) ∈ ℋ → ( normℎ ‘ ( ( 𝑦 / 2 ) ·ℎ 𝑥 ) ) ∈ ℝ ) | |
| 45 | 43 44 | syl | ⊢ ( ( 𝑦 ∈ ℝ+ ∧ ( 𝑥 ∈ ℋ ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) ) → ( normℎ ‘ ( ( 𝑦 / 2 ) ·ℎ 𝑥 ) ) ∈ ℝ ) |
| 46 | simprr | ⊢ ( ( 𝑦 ∈ ℝ+ ∧ ( 𝑥 ∈ ℋ ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) ) → ( normℎ ‘ 𝑥 ) ≤ 1 ) | |
| 47 | normcl | ⊢ ( 𝑥 ∈ ℋ → ( normℎ ‘ 𝑥 ) ∈ ℝ ) | |
| 48 | 47 | ad2antrl | ⊢ ( ( 𝑦 ∈ ℝ+ ∧ ( 𝑥 ∈ ℋ ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) ) → ( normℎ ‘ 𝑥 ) ∈ ℝ ) |
| 49 | 1red | ⊢ ( ( 𝑦 ∈ ℝ+ ∧ ( 𝑥 ∈ ℋ ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) ) → 1 ∈ ℝ ) | |
| 50 | rphalfcl | ⊢ ( 𝑦 ∈ ℝ+ → ( 𝑦 / 2 ) ∈ ℝ+ ) | |
| 51 | 50 | adantr | ⊢ ( ( 𝑦 ∈ ℝ+ ∧ ( 𝑥 ∈ ℋ ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) ) → ( 𝑦 / 2 ) ∈ ℝ+ ) |
| 52 | 48 49 51 | lemul2d | ⊢ ( ( 𝑦 ∈ ℝ+ ∧ ( 𝑥 ∈ ℋ ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) ) → ( ( normℎ ‘ 𝑥 ) ≤ 1 ↔ ( ( 𝑦 / 2 ) · ( normℎ ‘ 𝑥 ) ) ≤ ( ( 𝑦 / 2 ) · 1 ) ) ) |
| 53 | 46 52 | mpbid | ⊢ ( ( 𝑦 ∈ ℝ+ ∧ ( 𝑥 ∈ ℋ ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) ) → ( ( 𝑦 / 2 ) · ( normℎ ‘ 𝑥 ) ) ≤ ( ( 𝑦 / 2 ) · 1 ) ) |
| 54 | rpcn | ⊢ ( ( 𝑦 / 2 ) ∈ ℝ+ → ( 𝑦 / 2 ) ∈ ℂ ) | |
| 55 | norm-iii | ⊢ ( ( ( 𝑦 / 2 ) ∈ ℂ ∧ 𝑥 ∈ ℋ ) → ( normℎ ‘ ( ( 𝑦 / 2 ) ·ℎ 𝑥 ) ) = ( ( abs ‘ ( 𝑦 / 2 ) ) · ( normℎ ‘ 𝑥 ) ) ) | |
| 56 | 54 55 | sylan | ⊢ ( ( ( 𝑦 / 2 ) ∈ ℝ+ ∧ 𝑥 ∈ ℋ ) → ( normℎ ‘ ( ( 𝑦 / 2 ) ·ℎ 𝑥 ) ) = ( ( abs ‘ ( 𝑦 / 2 ) ) · ( normℎ ‘ 𝑥 ) ) ) |
| 57 | rpre | ⊢ ( ( 𝑦 / 2 ) ∈ ℝ+ → ( 𝑦 / 2 ) ∈ ℝ ) | |
| 58 | rpge0 | ⊢ ( ( 𝑦 / 2 ) ∈ ℝ+ → 0 ≤ ( 𝑦 / 2 ) ) | |
| 59 | 57 58 | absidd | ⊢ ( ( 𝑦 / 2 ) ∈ ℝ+ → ( abs ‘ ( 𝑦 / 2 ) ) = ( 𝑦 / 2 ) ) |
| 60 | 59 | oveq1d | ⊢ ( ( 𝑦 / 2 ) ∈ ℝ+ → ( ( abs ‘ ( 𝑦 / 2 ) ) · ( normℎ ‘ 𝑥 ) ) = ( ( 𝑦 / 2 ) · ( normℎ ‘ 𝑥 ) ) ) |
| 61 | 60 | adantr | ⊢ ( ( ( 𝑦 / 2 ) ∈ ℝ+ ∧ 𝑥 ∈ ℋ ) → ( ( abs ‘ ( 𝑦 / 2 ) ) · ( normℎ ‘ 𝑥 ) ) = ( ( 𝑦 / 2 ) · ( normℎ ‘ 𝑥 ) ) ) |
| 62 | 56 61 | eqtr2d | ⊢ ( ( ( 𝑦 / 2 ) ∈ ℝ+ ∧ 𝑥 ∈ ℋ ) → ( ( 𝑦 / 2 ) · ( normℎ ‘ 𝑥 ) ) = ( normℎ ‘ ( ( 𝑦 / 2 ) ·ℎ 𝑥 ) ) ) |
| 63 | 51 41 62 | syl2anc | ⊢ ( ( 𝑦 ∈ ℝ+ ∧ ( 𝑥 ∈ ℋ ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) ) → ( ( 𝑦 / 2 ) · ( normℎ ‘ 𝑥 ) ) = ( normℎ ‘ ( ( 𝑦 / 2 ) ·ℎ 𝑥 ) ) ) |
| 64 | 40 | mulridd | ⊢ ( ( 𝑦 ∈ ℝ+ ∧ ( 𝑥 ∈ ℋ ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) ) → ( ( 𝑦 / 2 ) · 1 ) = ( 𝑦 / 2 ) ) |
| 65 | 53 63 64 | 3brtr3d | ⊢ ( ( 𝑦 ∈ ℝ+ ∧ ( 𝑥 ∈ ℋ ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) ) → ( normℎ ‘ ( ( 𝑦 / 2 ) ·ℎ 𝑥 ) ) ≤ ( 𝑦 / 2 ) ) |
| 66 | rphalflt | ⊢ ( 𝑦 ∈ ℝ+ → ( 𝑦 / 2 ) < 𝑦 ) | |
| 67 | 66 | adantr | ⊢ ( ( 𝑦 ∈ ℝ+ ∧ ( 𝑥 ∈ ℋ ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) ) → ( 𝑦 / 2 ) < 𝑦 ) |
| 68 | 45 39 38 65 67 | lelttrd | ⊢ ( ( 𝑦 ∈ ℝ+ ∧ ( 𝑥 ∈ ℋ ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) ) → ( normℎ ‘ ( ( 𝑦 / 2 ) ·ℎ 𝑥 ) ) < 𝑦 ) |
| 69 | fveq2 | ⊢ ( 𝑧 = ( ( 𝑦 / 2 ) ·ℎ 𝑥 ) → ( normℎ ‘ 𝑧 ) = ( normℎ ‘ ( ( 𝑦 / 2 ) ·ℎ 𝑥 ) ) ) | |
| 70 | 69 | breq1d | ⊢ ( 𝑧 = ( ( 𝑦 / 2 ) ·ℎ 𝑥 ) → ( ( normℎ ‘ 𝑧 ) < 𝑦 ↔ ( normℎ ‘ ( ( 𝑦 / 2 ) ·ℎ 𝑥 ) ) < 𝑦 ) ) |
| 71 | 2fveq3 | ⊢ ( 𝑧 = ( ( 𝑦 / 2 ) ·ℎ 𝑥 ) → ( 𝑁 ‘ ( 𝑇 ‘ 𝑧 ) ) = ( 𝑁 ‘ ( 𝑇 ‘ ( ( 𝑦 / 2 ) ·ℎ 𝑥 ) ) ) ) | |
| 72 | 71 | breq1d | ⊢ ( 𝑧 = ( ( 𝑦 / 2 ) ·ℎ 𝑥 ) → ( ( 𝑁 ‘ ( 𝑇 ‘ 𝑧 ) ) < 1 ↔ ( 𝑁 ‘ ( 𝑇 ‘ ( ( 𝑦 / 2 ) ·ℎ 𝑥 ) ) ) < 1 ) ) |
| 73 | 70 72 | imbi12d | ⊢ ( 𝑧 = ( ( 𝑦 / 2 ) ·ℎ 𝑥 ) → ( ( ( normℎ ‘ 𝑧 ) < 𝑦 → ( 𝑁 ‘ ( 𝑇 ‘ 𝑧 ) ) < 1 ) ↔ ( ( normℎ ‘ ( ( 𝑦 / 2 ) ·ℎ 𝑥 ) ) < 𝑦 → ( 𝑁 ‘ ( 𝑇 ‘ ( ( 𝑦 / 2 ) ·ℎ 𝑥 ) ) ) < 1 ) ) ) |
| 74 | 73 | rspcv | ⊢ ( ( ( 𝑦 / 2 ) ·ℎ 𝑥 ) ∈ ℋ → ( ∀ 𝑧 ∈ ℋ ( ( normℎ ‘ 𝑧 ) < 𝑦 → ( 𝑁 ‘ ( 𝑇 ‘ 𝑧 ) ) < 1 ) → ( ( normℎ ‘ ( ( 𝑦 / 2 ) ·ℎ 𝑥 ) ) < 𝑦 → ( 𝑁 ‘ ( 𝑇 ‘ ( ( 𝑦 / 2 ) ·ℎ 𝑥 ) ) ) < 1 ) ) ) |
| 75 | 43 74 | syl | ⊢ ( ( 𝑦 ∈ ℝ+ ∧ ( 𝑥 ∈ ℋ ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) ) → ( ∀ 𝑧 ∈ ℋ ( ( normℎ ‘ 𝑧 ) < 𝑦 → ( 𝑁 ‘ ( 𝑇 ‘ 𝑧 ) ) < 1 ) → ( ( normℎ ‘ ( ( 𝑦 / 2 ) ·ℎ 𝑥 ) ) < 𝑦 → ( 𝑁 ‘ ( 𝑇 ‘ ( ( 𝑦 / 2 ) ·ℎ 𝑥 ) ) ) < 1 ) ) ) |
| 76 | 68 75 | mpid | ⊢ ( ( 𝑦 ∈ ℝ+ ∧ ( 𝑥 ∈ ℋ ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) ) → ( ∀ 𝑧 ∈ ℋ ( ( normℎ ‘ 𝑧 ) < 𝑦 → ( 𝑁 ‘ ( 𝑇 ‘ 𝑧 ) ) < 1 ) → ( 𝑁 ‘ ( 𝑇 ‘ ( ( 𝑦 / 2 ) ·ℎ 𝑥 ) ) ) < 1 ) ) |
| 77 | 3 | ad2antrl | ⊢ ( ( 𝑦 ∈ ℝ+ ∧ ( 𝑥 ∈ ℋ ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) ) → ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ∈ ℝ ) |
| 78 | 77 49 51 | ltmuldiv2d | ⊢ ( ( 𝑦 ∈ ℝ+ ∧ ( 𝑥 ∈ ℋ ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) ) → ( ( ( 𝑦 / 2 ) · ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) < 1 ↔ ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) < ( 1 / ( 𝑦 / 2 ) ) ) ) |
| 79 | 51 | rprecred | ⊢ ( ( 𝑦 ∈ ℝ+ ∧ ( 𝑥 ∈ ℋ ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) ) → ( 1 / ( 𝑦 / 2 ) ) ∈ ℝ ) |
| 80 | ltle | ⊢ ( ( ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ∈ ℝ ∧ ( 1 / ( 𝑦 / 2 ) ) ∈ ℝ ) → ( ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) < ( 1 / ( 𝑦 / 2 ) ) → ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( 1 / ( 𝑦 / 2 ) ) ) ) | |
| 81 | 77 79 80 | syl2anc | ⊢ ( ( 𝑦 ∈ ℝ+ ∧ ( 𝑥 ∈ ℋ ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) ) → ( ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) < ( 1 / ( 𝑦 / 2 ) ) → ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( 1 / ( 𝑦 / 2 ) ) ) ) |
| 82 | 78 81 | sylbid | ⊢ ( ( 𝑦 ∈ ℝ+ ∧ ( 𝑥 ∈ ℋ ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) ) → ( ( ( 𝑦 / 2 ) · ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) < 1 → ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( 1 / ( 𝑦 / 2 ) ) ) ) |
| 83 | 51 41 5 | syl2anc | ⊢ ( ( 𝑦 ∈ ℝ+ ∧ ( 𝑥 ∈ ℋ ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) ) → ( ( 𝑦 / 2 ) · ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) = ( 𝑁 ‘ ( 𝑇 ‘ ( ( 𝑦 / 2 ) ·ℎ 𝑥 ) ) ) ) |
| 84 | 83 | breq1d | ⊢ ( ( 𝑦 ∈ ℝ+ ∧ ( 𝑥 ∈ ℋ ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) ) → ( ( ( 𝑦 / 2 ) · ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) < 1 ↔ ( 𝑁 ‘ ( 𝑇 ‘ ( ( 𝑦 / 2 ) ·ℎ 𝑥 ) ) ) < 1 ) ) |
| 85 | rpcn | ⊢ ( 𝑦 ∈ ℝ+ → 𝑦 ∈ ℂ ) | |
| 86 | rpne0 | ⊢ ( 𝑦 ∈ ℝ+ → 𝑦 ≠ 0 ) | |
| 87 | 2cn | ⊢ 2 ∈ ℂ | |
| 88 | 2ne0 | ⊢ 2 ≠ 0 | |
| 89 | recdiv | ⊢ ( ( ( 𝑦 ∈ ℂ ∧ 𝑦 ≠ 0 ) ∧ ( 2 ∈ ℂ ∧ 2 ≠ 0 ) ) → ( 1 / ( 𝑦 / 2 ) ) = ( 2 / 𝑦 ) ) | |
| 90 | 87 88 89 | mpanr12 | ⊢ ( ( 𝑦 ∈ ℂ ∧ 𝑦 ≠ 0 ) → ( 1 / ( 𝑦 / 2 ) ) = ( 2 / 𝑦 ) ) |
| 91 | 85 86 90 | syl2anc | ⊢ ( 𝑦 ∈ ℝ+ → ( 1 / ( 𝑦 / 2 ) ) = ( 2 / 𝑦 ) ) |
| 92 | 91 | adantr | ⊢ ( ( 𝑦 ∈ ℝ+ ∧ ( 𝑥 ∈ ℋ ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) ) → ( 1 / ( 𝑦 / 2 ) ) = ( 2 / 𝑦 ) ) |
| 93 | 92 | breq2d | ⊢ ( ( 𝑦 ∈ ℝ+ ∧ ( 𝑥 ∈ ℋ ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) ) → ( ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( 1 / ( 𝑦 / 2 ) ) ↔ ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( 2 / 𝑦 ) ) ) |
| 94 | 82 84 93 | 3imtr3d | ⊢ ( ( 𝑦 ∈ ℝ+ ∧ ( 𝑥 ∈ ℋ ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) ) → ( ( 𝑁 ‘ ( 𝑇 ‘ ( ( 𝑦 / 2 ) ·ℎ 𝑥 ) ) ) < 1 → ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( 2 / 𝑦 ) ) ) |
| 95 | 76 94 | syld | ⊢ ( ( 𝑦 ∈ ℝ+ ∧ ( 𝑥 ∈ ℋ ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) ) → ( ∀ 𝑧 ∈ ℋ ( ( normℎ ‘ 𝑧 ) < 𝑦 → ( 𝑁 ‘ ( 𝑇 ‘ 𝑧 ) ) < 1 ) → ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( 2 / 𝑦 ) ) ) |
| 96 | 95 | imp | ⊢ ( ( ( 𝑦 ∈ ℝ+ ∧ ( 𝑥 ∈ ℋ ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) ) ∧ ∀ 𝑧 ∈ ℋ ( ( normℎ ‘ 𝑧 ) < 𝑦 → ( 𝑁 ‘ ( 𝑇 ‘ 𝑧 ) ) < 1 ) ) → ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( 2 / 𝑦 ) ) |
| 97 | 96 | an32s | ⊢ ( ( ( 𝑦 ∈ ℝ+ ∧ ∀ 𝑧 ∈ ℋ ( ( normℎ ‘ 𝑧 ) < 𝑦 → ( 𝑁 ‘ ( 𝑇 ‘ 𝑧 ) ) < 1 ) ) ∧ ( 𝑥 ∈ ℋ ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) ) → ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( 2 / 𝑦 ) ) |
| 98 | 97 | anassrs | ⊢ ( ( ( ( 𝑦 ∈ ℝ+ ∧ ∀ 𝑧 ∈ ℋ ( ( normℎ ‘ 𝑧 ) < 𝑦 → ( 𝑁 ‘ ( 𝑇 ‘ 𝑧 ) ) < 1 ) ) ∧ 𝑥 ∈ ℋ ) ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) → ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( 2 / 𝑦 ) ) |
| 99 | breq1 | ⊢ ( 𝑛 = ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) → ( 𝑛 ≤ ( 2 / 𝑦 ) ↔ ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( 2 / 𝑦 ) ) ) | |
| 100 | 98 99 | syl5ibrcom | ⊢ ( ( ( ( 𝑦 ∈ ℝ+ ∧ ∀ 𝑧 ∈ ℋ ( ( normℎ ‘ 𝑧 ) < 𝑦 → ( 𝑁 ‘ ( 𝑇 ‘ 𝑧 ) ) < 1 ) ) ∧ 𝑥 ∈ ℋ ) ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) → ( 𝑛 = ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) → 𝑛 ≤ ( 2 / 𝑦 ) ) ) |
| 101 | 100 | expimpd | ⊢ ( ( ( 𝑦 ∈ ℝ+ ∧ ∀ 𝑧 ∈ ℋ ( ( normℎ ‘ 𝑧 ) < 𝑦 → ( 𝑁 ‘ ( 𝑇 ‘ 𝑧 ) ) < 1 ) ) ∧ 𝑥 ∈ ℋ ) → ( ( ( normℎ ‘ 𝑥 ) ≤ 1 ∧ 𝑛 = ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) → 𝑛 ≤ ( 2 / 𝑦 ) ) ) |
| 102 | 101 | rexlimdva | ⊢ ( ( 𝑦 ∈ ℝ+ ∧ ∀ 𝑧 ∈ ℋ ( ( normℎ ‘ 𝑧 ) < 𝑦 → ( 𝑁 ‘ ( 𝑇 ‘ 𝑧 ) ) < 1 ) ) → ( ∃ 𝑥 ∈ ℋ ( ( normℎ ‘ 𝑥 ) ≤ 1 ∧ 𝑛 = ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) → 𝑛 ≤ ( 2 / 𝑦 ) ) ) |
| 103 | 102 | alrimiv | ⊢ ( ( 𝑦 ∈ ℝ+ ∧ ∀ 𝑧 ∈ ℋ ( ( normℎ ‘ 𝑧 ) < 𝑦 → ( 𝑁 ‘ ( 𝑇 ‘ 𝑧 ) ) < 1 ) ) → ∀ 𝑛 ( ∃ 𝑥 ∈ ℋ ( ( normℎ ‘ 𝑥 ) ≤ 1 ∧ 𝑛 = ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) → 𝑛 ≤ ( 2 / 𝑦 ) ) ) |
| 104 | eqeq1 | ⊢ ( 𝑚 = 𝑛 → ( 𝑚 = ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ↔ 𝑛 = ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) ) | |
| 105 | 104 | anbi2d | ⊢ ( 𝑚 = 𝑛 → ( ( ( normℎ ‘ 𝑥 ) ≤ 1 ∧ 𝑚 = ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) ↔ ( ( normℎ ‘ 𝑥 ) ≤ 1 ∧ 𝑛 = ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) ) ) |
| 106 | 105 | rexbidv | ⊢ ( 𝑚 = 𝑛 → ( ∃ 𝑥 ∈ ℋ ( ( normℎ ‘ 𝑥 ) ≤ 1 ∧ 𝑚 = ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) ↔ ∃ 𝑥 ∈ ℋ ( ( normℎ ‘ 𝑥 ) ≤ 1 ∧ 𝑛 = ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) ) ) |
| 107 | 106 | ralab | ⊢ ( ∀ 𝑛 ∈ { 𝑚 ∣ ∃ 𝑥 ∈ ℋ ( ( normℎ ‘ 𝑥 ) ≤ 1 ∧ 𝑚 = ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) } 𝑛 ≤ 𝑧 ↔ ∀ 𝑛 ( ∃ 𝑥 ∈ ℋ ( ( normℎ ‘ 𝑥 ) ≤ 1 ∧ 𝑛 = ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) → 𝑛 ≤ 𝑧 ) ) |
| 108 | breq2 | ⊢ ( 𝑧 = ( 2 / 𝑦 ) → ( 𝑛 ≤ 𝑧 ↔ 𝑛 ≤ ( 2 / 𝑦 ) ) ) | |
| 109 | 108 | imbi2d | ⊢ ( 𝑧 = ( 2 / 𝑦 ) → ( ( ∃ 𝑥 ∈ ℋ ( ( normℎ ‘ 𝑥 ) ≤ 1 ∧ 𝑛 = ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) → 𝑛 ≤ 𝑧 ) ↔ ( ∃ 𝑥 ∈ ℋ ( ( normℎ ‘ 𝑥 ) ≤ 1 ∧ 𝑛 = ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) → 𝑛 ≤ ( 2 / 𝑦 ) ) ) ) |
| 110 | 109 | albidv | ⊢ ( 𝑧 = ( 2 / 𝑦 ) → ( ∀ 𝑛 ( ∃ 𝑥 ∈ ℋ ( ( normℎ ‘ 𝑥 ) ≤ 1 ∧ 𝑛 = ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) → 𝑛 ≤ 𝑧 ) ↔ ∀ 𝑛 ( ∃ 𝑥 ∈ ℋ ( ( normℎ ‘ 𝑥 ) ≤ 1 ∧ 𝑛 = ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) → 𝑛 ≤ ( 2 / 𝑦 ) ) ) ) |
| 111 | 107 110 | bitrid | ⊢ ( 𝑧 = ( 2 / 𝑦 ) → ( ∀ 𝑛 ∈ { 𝑚 ∣ ∃ 𝑥 ∈ ℋ ( ( normℎ ‘ 𝑥 ) ≤ 1 ∧ 𝑚 = ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) } 𝑛 ≤ 𝑧 ↔ ∀ 𝑛 ( ∃ 𝑥 ∈ ℋ ( ( normℎ ‘ 𝑥 ) ≤ 1 ∧ 𝑛 = ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) → 𝑛 ≤ ( 2 / 𝑦 ) ) ) ) |
| 112 | 111 | rspcev | ⊢ ( ( ( 2 / 𝑦 ) ∈ ℝ ∧ ∀ 𝑛 ( ∃ 𝑥 ∈ ℋ ( ( normℎ ‘ 𝑥 ) ≤ 1 ∧ 𝑛 = ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) → 𝑛 ≤ ( 2 / 𝑦 ) ) ) → ∃ 𝑧 ∈ ℝ ∀ 𝑛 ∈ { 𝑚 ∣ ∃ 𝑥 ∈ ℋ ( ( normℎ ‘ 𝑥 ) ≤ 1 ∧ 𝑚 = ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) } 𝑛 ≤ 𝑧 ) |
| 113 | 36 103 112 | syl2anc | ⊢ ( ( 𝑦 ∈ ℝ+ ∧ ∀ 𝑧 ∈ ℋ ( ( normℎ ‘ 𝑧 ) < 𝑦 → ( 𝑁 ‘ ( 𝑇 ‘ 𝑧 ) ) < 1 ) ) → ∃ 𝑧 ∈ ℝ ∀ 𝑛 ∈ { 𝑚 ∣ ∃ 𝑥 ∈ ℋ ( ( normℎ ‘ 𝑥 ) ≤ 1 ∧ 𝑚 = ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) } 𝑛 ≤ 𝑧 ) |
| 114 | 113 | rexlimiva | ⊢ ( ∃ 𝑦 ∈ ℝ+ ∀ 𝑧 ∈ ℋ ( ( normℎ ‘ 𝑧 ) < 𝑦 → ( 𝑁 ‘ ( 𝑇 ‘ 𝑧 ) ) < 1 ) → ∃ 𝑧 ∈ ℝ ∀ 𝑛 ∈ { 𝑚 ∣ ∃ 𝑥 ∈ ℋ ( ( normℎ ‘ 𝑥 ) ≤ 1 ∧ 𝑚 = ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) } 𝑛 ≤ 𝑧 ) |
| 115 | 1 114 | ax-mp | ⊢ ∃ 𝑧 ∈ ℝ ∀ 𝑛 ∈ { 𝑚 ∣ ∃ 𝑥 ∈ ℋ ( ( normℎ ‘ 𝑥 ) ≤ 1 ∧ 𝑚 = ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) } 𝑛 ≤ 𝑧 |
| 116 | supxrre | ⊢ ( ( { 𝑚 ∣ ∃ 𝑥 ∈ ℋ ( ( normℎ ‘ 𝑥 ) ≤ 1 ∧ 𝑚 = ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) } ⊆ ℝ ∧ { 𝑚 ∣ ∃ 𝑥 ∈ ℋ ( ( normℎ ‘ 𝑥 ) ≤ 1 ∧ 𝑚 = ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) } ≠ ∅ ∧ ∃ 𝑧 ∈ ℝ ∀ 𝑛 ∈ { 𝑚 ∣ ∃ 𝑥 ∈ ℋ ( ( normℎ ‘ 𝑥 ) ≤ 1 ∧ 𝑚 = ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) } 𝑛 ≤ 𝑧 ) → sup ( { 𝑚 ∣ ∃ 𝑥 ∈ ℋ ( ( normℎ ‘ 𝑥 ) ≤ 1 ∧ 𝑚 = ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) } , ℝ* , < ) = sup ( { 𝑚 ∣ ∃ 𝑥 ∈ ℋ ( ( normℎ ‘ 𝑥 ) ≤ 1 ∧ 𝑚 = ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) } , ℝ , < ) ) | |
| 117 | 11 31 115 116 | mp3an | ⊢ sup ( { 𝑚 ∣ ∃ 𝑥 ∈ ℋ ( ( normℎ ‘ 𝑥 ) ≤ 1 ∧ 𝑚 = ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) } , ℝ* , < ) = sup ( { 𝑚 ∣ ∃ 𝑥 ∈ ℋ ( ( normℎ ‘ 𝑥 ) ≤ 1 ∧ 𝑚 = ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) } , ℝ , < ) |
| 118 | 2 117 | eqtri | ⊢ ( 𝑆 ‘ 𝑇 ) = sup ( { 𝑚 ∣ ∃ 𝑥 ∈ ℋ ( ( normℎ ‘ 𝑥 ) ≤ 1 ∧ 𝑚 = ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) } , ℝ , < ) |
| 119 | suprcl | ⊢ ( ( { 𝑚 ∣ ∃ 𝑥 ∈ ℋ ( ( normℎ ‘ 𝑥 ) ≤ 1 ∧ 𝑚 = ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) } ⊆ ℝ ∧ { 𝑚 ∣ ∃ 𝑥 ∈ ℋ ( ( normℎ ‘ 𝑥 ) ≤ 1 ∧ 𝑚 = ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) } ≠ ∅ ∧ ∃ 𝑧 ∈ ℝ ∀ 𝑛 ∈ { 𝑚 ∣ ∃ 𝑥 ∈ ℋ ( ( normℎ ‘ 𝑥 ) ≤ 1 ∧ 𝑚 = ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) } 𝑛 ≤ 𝑧 ) → sup ( { 𝑚 ∣ ∃ 𝑥 ∈ ℋ ( ( normℎ ‘ 𝑥 ) ≤ 1 ∧ 𝑚 = ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) } , ℝ , < ) ∈ ℝ ) | |
| 120 | 11 31 115 119 | mp3an | ⊢ sup ( { 𝑚 ∣ ∃ 𝑥 ∈ ℋ ( ( normℎ ‘ 𝑥 ) ≤ 1 ∧ 𝑚 = ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) } , ℝ , < ) ∈ ℝ |
| 121 | 118 120 | eqeltri | ⊢ ( 𝑆 ‘ 𝑇 ) ∈ ℝ |