This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closed subspace H of a Hilbert space. Definition of Beran p. 107. (Contributed by NM, 17-Aug-1999) (Revised by Mario Carneiro, 23-Dec-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | isch2 | ⊢ ( 𝐻 ∈ Cℋ ↔ ( 𝐻 ∈ Sℋ ∧ ∀ 𝑓 ∀ 𝑥 ( ( 𝑓 : ℕ ⟶ 𝐻 ∧ 𝑓 ⇝𝑣 𝑥 ) → 𝑥 ∈ 𝐻 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isch | ⊢ ( 𝐻 ∈ Cℋ ↔ ( 𝐻 ∈ Sℋ ∧ ( ⇝𝑣 “ ( 𝐻 ↑m ℕ ) ) ⊆ 𝐻 ) ) | |
| 2 | alcom | ⊢ ( ∀ 𝑓 ∀ 𝑥 ( ( 𝑓 ∈ ( 𝐻 ↑m ℕ ) ∧ 𝑓 ⇝𝑣 𝑥 ) → 𝑥 ∈ 𝐻 ) ↔ ∀ 𝑥 ∀ 𝑓 ( ( 𝑓 ∈ ( 𝐻 ↑m ℕ ) ∧ 𝑓 ⇝𝑣 𝑥 ) → 𝑥 ∈ 𝐻 ) ) | |
| 3 | 19.23v | ⊢ ( ∀ 𝑓 ( ( 𝑓 ∈ ( 𝐻 ↑m ℕ ) ∧ 𝑓 ⇝𝑣 𝑥 ) → 𝑥 ∈ 𝐻 ) ↔ ( ∃ 𝑓 ( 𝑓 ∈ ( 𝐻 ↑m ℕ ) ∧ 𝑓 ⇝𝑣 𝑥 ) → 𝑥 ∈ 𝐻 ) ) | |
| 4 | vex | ⊢ 𝑥 ∈ V | |
| 5 | 4 | elima2 | ⊢ ( 𝑥 ∈ ( ⇝𝑣 “ ( 𝐻 ↑m ℕ ) ) ↔ ∃ 𝑓 ( 𝑓 ∈ ( 𝐻 ↑m ℕ ) ∧ 𝑓 ⇝𝑣 𝑥 ) ) |
| 6 | 5 | imbi1i | ⊢ ( ( 𝑥 ∈ ( ⇝𝑣 “ ( 𝐻 ↑m ℕ ) ) → 𝑥 ∈ 𝐻 ) ↔ ( ∃ 𝑓 ( 𝑓 ∈ ( 𝐻 ↑m ℕ ) ∧ 𝑓 ⇝𝑣 𝑥 ) → 𝑥 ∈ 𝐻 ) ) |
| 7 | 3 6 | bitr4i | ⊢ ( ∀ 𝑓 ( ( 𝑓 ∈ ( 𝐻 ↑m ℕ ) ∧ 𝑓 ⇝𝑣 𝑥 ) → 𝑥 ∈ 𝐻 ) ↔ ( 𝑥 ∈ ( ⇝𝑣 “ ( 𝐻 ↑m ℕ ) ) → 𝑥 ∈ 𝐻 ) ) |
| 8 | 7 | albii | ⊢ ( ∀ 𝑥 ∀ 𝑓 ( ( 𝑓 ∈ ( 𝐻 ↑m ℕ ) ∧ 𝑓 ⇝𝑣 𝑥 ) → 𝑥 ∈ 𝐻 ) ↔ ∀ 𝑥 ( 𝑥 ∈ ( ⇝𝑣 “ ( 𝐻 ↑m ℕ ) ) → 𝑥 ∈ 𝐻 ) ) |
| 9 | df-ss | ⊢ ( ( ⇝𝑣 “ ( 𝐻 ↑m ℕ ) ) ⊆ 𝐻 ↔ ∀ 𝑥 ( 𝑥 ∈ ( ⇝𝑣 “ ( 𝐻 ↑m ℕ ) ) → 𝑥 ∈ 𝐻 ) ) | |
| 10 | 8 9 | bitr4i | ⊢ ( ∀ 𝑥 ∀ 𝑓 ( ( 𝑓 ∈ ( 𝐻 ↑m ℕ ) ∧ 𝑓 ⇝𝑣 𝑥 ) → 𝑥 ∈ 𝐻 ) ↔ ( ⇝𝑣 “ ( 𝐻 ↑m ℕ ) ) ⊆ 𝐻 ) |
| 11 | 2 10 | bitri | ⊢ ( ∀ 𝑓 ∀ 𝑥 ( ( 𝑓 ∈ ( 𝐻 ↑m ℕ ) ∧ 𝑓 ⇝𝑣 𝑥 ) → 𝑥 ∈ 𝐻 ) ↔ ( ⇝𝑣 “ ( 𝐻 ↑m ℕ ) ) ⊆ 𝐻 ) |
| 12 | nnex | ⊢ ℕ ∈ V | |
| 13 | elmapg | ⊢ ( ( 𝐻 ∈ Sℋ ∧ ℕ ∈ V ) → ( 𝑓 ∈ ( 𝐻 ↑m ℕ ) ↔ 𝑓 : ℕ ⟶ 𝐻 ) ) | |
| 14 | 12 13 | mpan2 | ⊢ ( 𝐻 ∈ Sℋ → ( 𝑓 ∈ ( 𝐻 ↑m ℕ ) ↔ 𝑓 : ℕ ⟶ 𝐻 ) ) |
| 15 | 14 | anbi1d | ⊢ ( 𝐻 ∈ Sℋ → ( ( 𝑓 ∈ ( 𝐻 ↑m ℕ ) ∧ 𝑓 ⇝𝑣 𝑥 ) ↔ ( 𝑓 : ℕ ⟶ 𝐻 ∧ 𝑓 ⇝𝑣 𝑥 ) ) ) |
| 16 | 15 | imbi1d | ⊢ ( 𝐻 ∈ Sℋ → ( ( ( 𝑓 ∈ ( 𝐻 ↑m ℕ ) ∧ 𝑓 ⇝𝑣 𝑥 ) → 𝑥 ∈ 𝐻 ) ↔ ( ( 𝑓 : ℕ ⟶ 𝐻 ∧ 𝑓 ⇝𝑣 𝑥 ) → 𝑥 ∈ 𝐻 ) ) ) |
| 17 | 16 | 2albidv | ⊢ ( 𝐻 ∈ Sℋ → ( ∀ 𝑓 ∀ 𝑥 ( ( 𝑓 ∈ ( 𝐻 ↑m ℕ ) ∧ 𝑓 ⇝𝑣 𝑥 ) → 𝑥 ∈ 𝐻 ) ↔ ∀ 𝑓 ∀ 𝑥 ( ( 𝑓 : ℕ ⟶ 𝐻 ∧ 𝑓 ⇝𝑣 𝑥 ) → 𝑥 ∈ 𝐻 ) ) ) |
| 18 | 11 17 | bitr3id | ⊢ ( 𝐻 ∈ Sℋ → ( ( ⇝𝑣 “ ( 𝐻 ↑m ℕ ) ) ⊆ 𝐻 ↔ ∀ 𝑓 ∀ 𝑥 ( ( 𝑓 : ℕ ⟶ 𝐻 ∧ 𝑓 ⇝𝑣 𝑥 ) → 𝑥 ∈ 𝐻 ) ) ) |
| 19 | 18 | pm5.32i | ⊢ ( ( 𝐻 ∈ Sℋ ∧ ( ⇝𝑣 “ ( 𝐻 ↑m ℕ ) ) ⊆ 𝐻 ) ↔ ( 𝐻 ∈ Sℋ ∧ ∀ 𝑓 ∀ 𝑥 ( ( 𝑓 : ℕ ⟶ 𝐻 ∧ 𝑓 ⇝𝑣 𝑥 ) → 𝑥 ∈ 𝐻 ) ) ) |
| 20 | 1 19 | bitri | ⊢ ( 𝐻 ∈ Cℋ ↔ ( 𝐻 ∈ Sℋ ∧ ∀ 𝑓 ∀ 𝑥 ( ( 𝑓 : ℕ ⟶ 𝐻 ∧ 𝑓 ⇝𝑣 𝑥 ) → 𝑥 ∈ 𝐻 ) ) ) |