This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The null space of a linear functional is a subspace. (Contributed by NM, 11-Feb-2006) (Revised by Mario Carneiro, 17-Nov-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | nlelsh.1 | ⊢ 𝑇 ∈ LinFn | |
| Assertion | nlelshi | ⊢ ( null ‘ 𝑇 ) ∈ Sℋ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nlelsh.1 | ⊢ 𝑇 ∈ LinFn | |
| 2 | ax-hv0cl | ⊢ 0ℎ ∈ ℋ | |
| 3 | 1 | lnfn0i | ⊢ ( 𝑇 ‘ 0ℎ ) = 0 |
| 4 | 1 | lnfnfi | ⊢ 𝑇 : ℋ ⟶ ℂ |
| 5 | elnlfn | ⊢ ( 𝑇 : ℋ ⟶ ℂ → ( 0ℎ ∈ ( null ‘ 𝑇 ) ↔ ( 0ℎ ∈ ℋ ∧ ( 𝑇 ‘ 0ℎ ) = 0 ) ) ) | |
| 6 | 4 5 | ax-mp | ⊢ ( 0ℎ ∈ ( null ‘ 𝑇 ) ↔ ( 0ℎ ∈ ℋ ∧ ( 𝑇 ‘ 0ℎ ) = 0 ) ) |
| 7 | 2 3 6 | mpbir2an | ⊢ 0ℎ ∈ ( null ‘ 𝑇 ) |
| 8 | nlfnval | ⊢ ( 𝑇 : ℋ ⟶ ℂ → ( null ‘ 𝑇 ) = ( ◡ 𝑇 “ { 0 } ) ) | |
| 9 | 4 8 | ax-mp | ⊢ ( null ‘ 𝑇 ) = ( ◡ 𝑇 “ { 0 } ) |
| 10 | cnvimass | ⊢ ( ◡ 𝑇 “ { 0 } ) ⊆ dom 𝑇 | |
| 11 | 9 10 | eqsstri | ⊢ ( null ‘ 𝑇 ) ⊆ dom 𝑇 |
| 12 | 4 | fdmi | ⊢ dom 𝑇 = ℋ |
| 13 | 11 12 | sseqtri | ⊢ ( null ‘ 𝑇 ) ⊆ ℋ |
| 14 | 13 | sseli | ⊢ ( 𝑥 ∈ ( null ‘ 𝑇 ) → 𝑥 ∈ ℋ ) |
| 15 | 13 | sseli | ⊢ ( 𝑦 ∈ ( null ‘ 𝑇 ) → 𝑦 ∈ ℋ ) |
| 16 | hvaddcl | ⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( 𝑥 +ℎ 𝑦 ) ∈ ℋ ) | |
| 17 | 14 15 16 | syl2an | ⊢ ( ( 𝑥 ∈ ( null ‘ 𝑇 ) ∧ 𝑦 ∈ ( null ‘ 𝑇 ) ) → ( 𝑥 +ℎ 𝑦 ) ∈ ℋ ) |
| 18 | 1 | lnfnaddi | ⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( 𝑇 ‘ ( 𝑥 +ℎ 𝑦 ) ) = ( ( 𝑇 ‘ 𝑥 ) + ( 𝑇 ‘ 𝑦 ) ) ) |
| 19 | 14 15 18 | syl2an | ⊢ ( ( 𝑥 ∈ ( null ‘ 𝑇 ) ∧ 𝑦 ∈ ( null ‘ 𝑇 ) ) → ( 𝑇 ‘ ( 𝑥 +ℎ 𝑦 ) ) = ( ( 𝑇 ‘ 𝑥 ) + ( 𝑇 ‘ 𝑦 ) ) ) |
| 20 | elnlfn | ⊢ ( 𝑇 : ℋ ⟶ ℂ → ( 𝑥 ∈ ( null ‘ 𝑇 ) ↔ ( 𝑥 ∈ ℋ ∧ ( 𝑇 ‘ 𝑥 ) = 0 ) ) ) | |
| 21 | 4 20 | ax-mp | ⊢ ( 𝑥 ∈ ( null ‘ 𝑇 ) ↔ ( 𝑥 ∈ ℋ ∧ ( 𝑇 ‘ 𝑥 ) = 0 ) ) |
| 22 | 21 | simprbi | ⊢ ( 𝑥 ∈ ( null ‘ 𝑇 ) → ( 𝑇 ‘ 𝑥 ) = 0 ) |
| 23 | elnlfn | ⊢ ( 𝑇 : ℋ ⟶ ℂ → ( 𝑦 ∈ ( null ‘ 𝑇 ) ↔ ( 𝑦 ∈ ℋ ∧ ( 𝑇 ‘ 𝑦 ) = 0 ) ) ) | |
| 24 | 4 23 | ax-mp | ⊢ ( 𝑦 ∈ ( null ‘ 𝑇 ) ↔ ( 𝑦 ∈ ℋ ∧ ( 𝑇 ‘ 𝑦 ) = 0 ) ) |
| 25 | 24 | simprbi | ⊢ ( 𝑦 ∈ ( null ‘ 𝑇 ) → ( 𝑇 ‘ 𝑦 ) = 0 ) |
| 26 | 22 25 | oveqan12d | ⊢ ( ( 𝑥 ∈ ( null ‘ 𝑇 ) ∧ 𝑦 ∈ ( null ‘ 𝑇 ) ) → ( ( 𝑇 ‘ 𝑥 ) + ( 𝑇 ‘ 𝑦 ) ) = ( 0 + 0 ) ) |
| 27 | 19 26 | eqtrd | ⊢ ( ( 𝑥 ∈ ( null ‘ 𝑇 ) ∧ 𝑦 ∈ ( null ‘ 𝑇 ) ) → ( 𝑇 ‘ ( 𝑥 +ℎ 𝑦 ) ) = ( 0 + 0 ) ) |
| 28 | 00id | ⊢ ( 0 + 0 ) = 0 | |
| 29 | 27 28 | eqtrdi | ⊢ ( ( 𝑥 ∈ ( null ‘ 𝑇 ) ∧ 𝑦 ∈ ( null ‘ 𝑇 ) ) → ( 𝑇 ‘ ( 𝑥 +ℎ 𝑦 ) ) = 0 ) |
| 30 | elnlfn | ⊢ ( 𝑇 : ℋ ⟶ ℂ → ( ( 𝑥 +ℎ 𝑦 ) ∈ ( null ‘ 𝑇 ) ↔ ( ( 𝑥 +ℎ 𝑦 ) ∈ ℋ ∧ ( 𝑇 ‘ ( 𝑥 +ℎ 𝑦 ) ) = 0 ) ) ) | |
| 31 | 4 30 | ax-mp | ⊢ ( ( 𝑥 +ℎ 𝑦 ) ∈ ( null ‘ 𝑇 ) ↔ ( ( 𝑥 +ℎ 𝑦 ) ∈ ℋ ∧ ( 𝑇 ‘ ( 𝑥 +ℎ 𝑦 ) ) = 0 ) ) |
| 32 | 17 29 31 | sylanbrc | ⊢ ( ( 𝑥 ∈ ( null ‘ 𝑇 ) ∧ 𝑦 ∈ ( null ‘ 𝑇 ) ) → ( 𝑥 +ℎ 𝑦 ) ∈ ( null ‘ 𝑇 ) ) |
| 33 | 32 | rgen2 | ⊢ ∀ 𝑥 ∈ ( null ‘ 𝑇 ) ∀ 𝑦 ∈ ( null ‘ 𝑇 ) ( 𝑥 +ℎ 𝑦 ) ∈ ( null ‘ 𝑇 ) |
| 34 | hvmulcl | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) → ( 𝑥 ·ℎ 𝑦 ) ∈ ℋ ) | |
| 35 | 15 34 | sylan2 | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ( null ‘ 𝑇 ) ) → ( 𝑥 ·ℎ 𝑦 ) ∈ ℋ ) |
| 36 | 1 | lnfnmuli | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) → ( 𝑇 ‘ ( 𝑥 ·ℎ 𝑦 ) ) = ( 𝑥 · ( 𝑇 ‘ 𝑦 ) ) ) |
| 37 | 15 36 | sylan2 | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ( null ‘ 𝑇 ) ) → ( 𝑇 ‘ ( 𝑥 ·ℎ 𝑦 ) ) = ( 𝑥 · ( 𝑇 ‘ 𝑦 ) ) ) |
| 38 | 25 | oveq2d | ⊢ ( 𝑦 ∈ ( null ‘ 𝑇 ) → ( 𝑥 · ( 𝑇 ‘ 𝑦 ) ) = ( 𝑥 · 0 ) ) |
| 39 | mul01 | ⊢ ( 𝑥 ∈ ℂ → ( 𝑥 · 0 ) = 0 ) | |
| 40 | 38 39 | sylan9eqr | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ( null ‘ 𝑇 ) ) → ( 𝑥 · ( 𝑇 ‘ 𝑦 ) ) = 0 ) |
| 41 | 37 40 | eqtrd | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ( null ‘ 𝑇 ) ) → ( 𝑇 ‘ ( 𝑥 ·ℎ 𝑦 ) ) = 0 ) |
| 42 | elnlfn | ⊢ ( 𝑇 : ℋ ⟶ ℂ → ( ( 𝑥 ·ℎ 𝑦 ) ∈ ( null ‘ 𝑇 ) ↔ ( ( 𝑥 ·ℎ 𝑦 ) ∈ ℋ ∧ ( 𝑇 ‘ ( 𝑥 ·ℎ 𝑦 ) ) = 0 ) ) ) | |
| 43 | 4 42 | ax-mp | ⊢ ( ( 𝑥 ·ℎ 𝑦 ) ∈ ( null ‘ 𝑇 ) ↔ ( ( 𝑥 ·ℎ 𝑦 ) ∈ ℋ ∧ ( 𝑇 ‘ ( 𝑥 ·ℎ 𝑦 ) ) = 0 ) ) |
| 44 | 35 41 43 | sylanbrc | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ( null ‘ 𝑇 ) ) → ( 𝑥 ·ℎ 𝑦 ) ∈ ( null ‘ 𝑇 ) ) |
| 45 | 44 | rgen2 | ⊢ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ ( null ‘ 𝑇 ) ( 𝑥 ·ℎ 𝑦 ) ∈ ( null ‘ 𝑇 ) |
| 46 | 33 45 | pm3.2i | ⊢ ( ∀ 𝑥 ∈ ( null ‘ 𝑇 ) ∀ 𝑦 ∈ ( null ‘ 𝑇 ) ( 𝑥 +ℎ 𝑦 ) ∈ ( null ‘ 𝑇 ) ∧ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ ( null ‘ 𝑇 ) ( 𝑥 ·ℎ 𝑦 ) ∈ ( null ‘ 𝑇 ) ) |
| 47 | issh3 | ⊢ ( ( null ‘ 𝑇 ) ⊆ ℋ → ( ( null ‘ 𝑇 ) ∈ Sℋ ↔ ( 0ℎ ∈ ( null ‘ 𝑇 ) ∧ ( ∀ 𝑥 ∈ ( null ‘ 𝑇 ) ∀ 𝑦 ∈ ( null ‘ 𝑇 ) ( 𝑥 +ℎ 𝑦 ) ∈ ( null ‘ 𝑇 ) ∧ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ ( null ‘ 𝑇 ) ( 𝑥 ·ℎ 𝑦 ) ∈ ( null ‘ 𝑇 ) ) ) ) ) | |
| 48 | 13 47 | ax-mp | ⊢ ( ( null ‘ 𝑇 ) ∈ Sℋ ↔ ( 0ℎ ∈ ( null ‘ 𝑇 ) ∧ ( ∀ 𝑥 ∈ ( null ‘ 𝑇 ) ∀ 𝑦 ∈ ( null ‘ 𝑇 ) ( 𝑥 +ℎ 𝑦 ) ∈ ( null ‘ 𝑇 ) ∧ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ ( null ‘ 𝑇 ) ( 𝑥 ·ℎ 𝑦 ) ∈ ( null ‘ 𝑇 ) ) ) ) |
| 49 | 7 46 48 | mpbir2an | ⊢ ( null ‘ 𝑇 ) ∈ Sℋ |