This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for neiptopreu . (Contributed by Thierry Arnoux, 7-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | neiptop.o | ⊢ 𝐽 = { 𝑎 ∈ 𝒫 𝑋 ∣ ∀ 𝑝 ∈ 𝑎 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) } | |
| neiptop.0 | ⊢ ( 𝜑 → 𝑁 : 𝑋 ⟶ 𝒫 𝒫 𝑋 ) | ||
| neiptop.1 | ⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋 ) ∧ 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ) → 𝑏 ∈ ( 𝑁 ‘ 𝑝 ) ) | ||
| neiptop.2 | ⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝑋 ) → ( fi ‘ ( 𝑁 ‘ 𝑝 ) ) ⊆ ( 𝑁 ‘ 𝑝 ) ) | ||
| neiptop.3 | ⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ) → 𝑝 ∈ 𝑎 ) | ||
| neiptop.4 | ⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ) → ∃ 𝑏 ∈ ( 𝑁 ‘ 𝑝 ) ∀ 𝑞 ∈ 𝑏 𝑎 ∈ ( 𝑁 ‘ 𝑞 ) ) | ||
| neiptop.5 | ⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝑋 ) → 𝑋 ∈ ( 𝑁 ‘ 𝑝 ) ) | ||
| Assertion | neiptoptop | ⊢ ( 𝜑 → 𝐽 ∈ Top ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neiptop.o | ⊢ 𝐽 = { 𝑎 ∈ 𝒫 𝑋 ∣ ∀ 𝑝 ∈ 𝑎 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) } | |
| 2 | neiptop.0 | ⊢ ( 𝜑 → 𝑁 : 𝑋 ⟶ 𝒫 𝒫 𝑋 ) | |
| 3 | neiptop.1 | ⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋 ) ∧ 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ) → 𝑏 ∈ ( 𝑁 ‘ 𝑝 ) ) | |
| 4 | neiptop.2 | ⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝑋 ) → ( fi ‘ ( 𝑁 ‘ 𝑝 ) ) ⊆ ( 𝑁 ‘ 𝑝 ) ) | |
| 5 | neiptop.3 | ⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ) → 𝑝 ∈ 𝑎 ) | |
| 6 | neiptop.4 | ⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ) → ∃ 𝑏 ∈ ( 𝑁 ‘ 𝑝 ) ∀ 𝑞 ∈ 𝑏 𝑎 ∈ ( 𝑁 ‘ 𝑞 ) ) | |
| 7 | neiptop.5 | ⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝑋 ) → 𝑋 ∈ ( 𝑁 ‘ 𝑝 ) ) | |
| 8 | uniss | ⊢ ( 𝑒 ⊆ 𝐽 → ∪ 𝑒 ⊆ ∪ 𝐽 ) | |
| 9 | 8 | adantl | ⊢ ( ( 𝜑 ∧ 𝑒 ⊆ 𝐽 ) → ∪ 𝑒 ⊆ ∪ 𝐽 ) |
| 10 | 1 2 3 4 5 6 7 | neiptopuni | ⊢ ( 𝜑 → 𝑋 = ∪ 𝐽 ) |
| 11 | 10 | adantr | ⊢ ( ( 𝜑 ∧ 𝑒 ⊆ 𝐽 ) → 𝑋 = ∪ 𝐽 ) |
| 12 | 9 11 | sseqtrrd | ⊢ ( ( 𝜑 ∧ 𝑒 ⊆ 𝐽 ) → ∪ 𝑒 ⊆ 𝑋 ) |
| 13 | simp-4l | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑒 ⊆ 𝐽 ) ∧ 𝑝 ∈ ∪ 𝑒 ) ∧ 𝑐 ∈ 𝑒 ) ∧ 𝑝 ∈ 𝑐 ) → 𝜑 ) | |
| 14 | 12 | ad3antrrr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑒 ⊆ 𝐽 ) ∧ 𝑝 ∈ ∪ 𝑒 ) ∧ 𝑐 ∈ 𝑒 ) ∧ 𝑝 ∈ 𝑐 ) → ∪ 𝑒 ⊆ 𝑋 ) |
| 15 | simpllr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑒 ⊆ 𝐽 ) ∧ 𝑝 ∈ ∪ 𝑒 ) ∧ 𝑐 ∈ 𝑒 ) ∧ 𝑝 ∈ 𝑐 ) → 𝑝 ∈ ∪ 𝑒 ) | |
| 16 | 14 15 | sseldd | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑒 ⊆ 𝐽 ) ∧ 𝑝 ∈ ∪ 𝑒 ) ∧ 𝑐 ∈ 𝑒 ) ∧ 𝑝 ∈ 𝑐 ) → 𝑝 ∈ 𝑋 ) |
| 17 | 13 16 | jca | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑒 ⊆ 𝐽 ) ∧ 𝑝 ∈ ∪ 𝑒 ) ∧ 𝑐 ∈ 𝑒 ) ∧ 𝑝 ∈ 𝑐 ) → ( 𝜑 ∧ 𝑝 ∈ 𝑋 ) ) |
| 18 | elssuni | ⊢ ( 𝑐 ∈ 𝑒 → 𝑐 ⊆ ∪ 𝑒 ) | |
| 19 | 18 | ad2antlr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑒 ⊆ 𝐽 ) ∧ 𝑝 ∈ ∪ 𝑒 ) ∧ 𝑐 ∈ 𝑒 ) ∧ 𝑝 ∈ 𝑐 ) → 𝑐 ⊆ ∪ 𝑒 ) |
| 20 | 17 19 14 | 3jca | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑒 ⊆ 𝐽 ) ∧ 𝑝 ∈ ∪ 𝑒 ) ∧ 𝑐 ∈ 𝑒 ) ∧ 𝑝 ∈ 𝑐 ) → ( ( 𝜑 ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑐 ⊆ ∪ 𝑒 ∧ ∪ 𝑒 ⊆ 𝑋 ) ) |
| 21 | simpr | ⊢ ( ( 𝜑 ∧ 𝑒 ⊆ 𝐽 ) → 𝑒 ⊆ 𝐽 ) | |
| 22 | 21 | sselda | ⊢ ( ( ( 𝜑 ∧ 𝑒 ⊆ 𝐽 ) ∧ 𝑐 ∈ 𝑒 ) → 𝑐 ∈ 𝐽 ) |
| 23 | 1 | neipeltop | ⊢ ( 𝑐 ∈ 𝐽 ↔ ( 𝑐 ⊆ 𝑋 ∧ ∀ 𝑝 ∈ 𝑐 𝑐 ∈ ( 𝑁 ‘ 𝑝 ) ) ) |
| 24 | 23 | simprbi | ⊢ ( 𝑐 ∈ 𝐽 → ∀ 𝑝 ∈ 𝑐 𝑐 ∈ ( 𝑁 ‘ 𝑝 ) ) |
| 25 | 22 24 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑒 ⊆ 𝐽 ) ∧ 𝑐 ∈ 𝑒 ) → ∀ 𝑝 ∈ 𝑐 𝑐 ∈ ( 𝑁 ‘ 𝑝 ) ) |
| 26 | 25 | r19.21bi | ⊢ ( ( ( ( 𝜑 ∧ 𝑒 ⊆ 𝐽 ) ∧ 𝑐 ∈ 𝑒 ) ∧ 𝑝 ∈ 𝑐 ) → 𝑐 ∈ ( 𝑁 ‘ 𝑝 ) ) |
| 27 | 26 | adantllr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑒 ⊆ 𝐽 ) ∧ 𝑝 ∈ ∪ 𝑒 ) ∧ 𝑐 ∈ 𝑒 ) ∧ 𝑝 ∈ 𝑐 ) → 𝑐 ∈ ( 𝑁 ‘ 𝑝 ) ) |
| 28 | sseq1 | ⊢ ( 𝑎 = 𝑐 → ( 𝑎 ⊆ ∪ 𝑒 ↔ 𝑐 ⊆ ∪ 𝑒 ) ) | |
| 29 | 28 | 3anbi2d | ⊢ ( 𝑎 = 𝑐 → ( ( ( 𝜑 ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑎 ⊆ ∪ 𝑒 ∧ ∪ 𝑒 ⊆ 𝑋 ) ↔ ( ( 𝜑 ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑐 ⊆ ∪ 𝑒 ∧ ∪ 𝑒 ⊆ 𝑋 ) ) ) |
| 30 | eleq1 | ⊢ ( 𝑎 = 𝑐 → ( 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ↔ 𝑐 ∈ ( 𝑁 ‘ 𝑝 ) ) ) | |
| 31 | 29 30 | anbi12d | ⊢ ( 𝑎 = 𝑐 → ( ( ( ( 𝜑 ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑎 ⊆ ∪ 𝑒 ∧ ∪ 𝑒 ⊆ 𝑋 ) ∧ 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ) ↔ ( ( ( 𝜑 ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑐 ⊆ ∪ 𝑒 ∧ ∪ 𝑒 ⊆ 𝑋 ) ∧ 𝑐 ∈ ( 𝑁 ‘ 𝑝 ) ) ) ) |
| 32 | 31 | imbi1d | ⊢ ( 𝑎 = 𝑐 → ( ( ( ( ( 𝜑 ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑎 ⊆ ∪ 𝑒 ∧ ∪ 𝑒 ⊆ 𝑋 ) ∧ 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ) → ∪ 𝑒 ∈ ( 𝑁 ‘ 𝑝 ) ) ↔ ( ( ( ( 𝜑 ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑐 ⊆ ∪ 𝑒 ∧ ∪ 𝑒 ⊆ 𝑋 ) ∧ 𝑐 ∈ ( 𝑁 ‘ 𝑝 ) ) → ∪ 𝑒 ∈ ( 𝑁 ‘ 𝑝 ) ) ) ) |
| 33 | 32 | imbi2d | ⊢ ( 𝑎 = 𝑐 → ( ( ( 𝜑 ∧ 𝑒 ⊆ 𝐽 ) → ( ( ( ( 𝜑 ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑎 ⊆ ∪ 𝑒 ∧ ∪ 𝑒 ⊆ 𝑋 ) ∧ 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ) → ∪ 𝑒 ∈ ( 𝑁 ‘ 𝑝 ) ) ) ↔ ( ( 𝜑 ∧ 𝑒 ⊆ 𝐽 ) → ( ( ( ( 𝜑 ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑐 ⊆ ∪ 𝑒 ∧ ∪ 𝑒 ⊆ 𝑋 ) ∧ 𝑐 ∈ ( 𝑁 ‘ 𝑝 ) ) → ∪ 𝑒 ∈ ( 𝑁 ‘ 𝑝 ) ) ) ) ) |
| 34 | ssidd | ⊢ ( 𝜑 → 𝑋 ⊆ 𝑋 ) | |
| 35 | 7 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑝 ∈ 𝑋 𝑋 ∈ ( 𝑁 ‘ 𝑝 ) ) |
| 36 | 1 | neipeltop | ⊢ ( 𝑋 ∈ 𝐽 ↔ ( 𝑋 ⊆ 𝑋 ∧ ∀ 𝑝 ∈ 𝑋 𝑋 ∈ ( 𝑁 ‘ 𝑝 ) ) ) |
| 37 | 34 35 36 | sylanbrc | ⊢ ( 𝜑 → 𝑋 ∈ 𝐽 ) |
| 38 | pwexg | ⊢ ( 𝑋 ∈ 𝐽 → 𝒫 𝑋 ∈ V ) | |
| 39 | rabexg | ⊢ ( 𝒫 𝑋 ∈ V → { 𝑎 ∈ 𝒫 𝑋 ∣ ∀ 𝑝 ∈ 𝑎 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) } ∈ V ) | |
| 40 | 37 38 39 | 3syl | ⊢ ( 𝜑 → { 𝑎 ∈ 𝒫 𝑋 ∣ ∀ 𝑝 ∈ 𝑎 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) } ∈ V ) |
| 41 | 1 40 | eqeltrid | ⊢ ( 𝜑 → 𝐽 ∈ V ) |
| 42 | 41 | adantr | ⊢ ( ( 𝜑 ∧ 𝑒 ⊆ 𝐽 ) → 𝐽 ∈ V ) |
| 43 | 42 21 | ssexd | ⊢ ( ( 𝜑 ∧ 𝑒 ⊆ 𝐽 ) → 𝑒 ∈ V ) |
| 44 | uniexg | ⊢ ( 𝑒 ∈ V → ∪ 𝑒 ∈ V ) | |
| 45 | sseq2 | ⊢ ( 𝑏 = ∪ 𝑒 → ( 𝑎 ⊆ 𝑏 ↔ 𝑎 ⊆ ∪ 𝑒 ) ) | |
| 46 | sseq1 | ⊢ ( 𝑏 = ∪ 𝑒 → ( 𝑏 ⊆ 𝑋 ↔ ∪ 𝑒 ⊆ 𝑋 ) ) | |
| 47 | 45 46 | 3anbi23d | ⊢ ( 𝑏 = ∪ 𝑒 → ( ( ( 𝜑 ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋 ) ↔ ( ( 𝜑 ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑎 ⊆ ∪ 𝑒 ∧ ∪ 𝑒 ⊆ 𝑋 ) ) ) |
| 48 | 47 | anbi1d | ⊢ ( 𝑏 = ∪ 𝑒 → ( ( ( ( 𝜑 ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋 ) ∧ 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ) ↔ ( ( ( 𝜑 ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑎 ⊆ ∪ 𝑒 ∧ ∪ 𝑒 ⊆ 𝑋 ) ∧ 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ) ) ) |
| 49 | eleq1 | ⊢ ( 𝑏 = ∪ 𝑒 → ( 𝑏 ∈ ( 𝑁 ‘ 𝑝 ) ↔ ∪ 𝑒 ∈ ( 𝑁 ‘ 𝑝 ) ) ) | |
| 50 | 48 49 | imbi12d | ⊢ ( 𝑏 = ∪ 𝑒 → ( ( ( ( ( 𝜑 ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋 ) ∧ 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ) → 𝑏 ∈ ( 𝑁 ‘ 𝑝 ) ) ↔ ( ( ( ( 𝜑 ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑎 ⊆ ∪ 𝑒 ∧ ∪ 𝑒 ⊆ 𝑋 ) ∧ 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ) → ∪ 𝑒 ∈ ( 𝑁 ‘ 𝑝 ) ) ) ) |
| 51 | 50 3 | vtoclg | ⊢ ( ∪ 𝑒 ∈ V → ( ( ( ( 𝜑 ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑎 ⊆ ∪ 𝑒 ∧ ∪ 𝑒 ⊆ 𝑋 ) ∧ 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ) → ∪ 𝑒 ∈ ( 𝑁 ‘ 𝑝 ) ) ) |
| 52 | 43 44 51 | 3syl | ⊢ ( ( 𝜑 ∧ 𝑒 ⊆ 𝐽 ) → ( ( ( ( 𝜑 ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑎 ⊆ ∪ 𝑒 ∧ ∪ 𝑒 ⊆ 𝑋 ) ∧ 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ) → ∪ 𝑒 ∈ ( 𝑁 ‘ 𝑝 ) ) ) |
| 53 | 33 52 | chvarvv | ⊢ ( ( 𝜑 ∧ 𝑒 ⊆ 𝐽 ) → ( ( ( ( 𝜑 ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑐 ⊆ ∪ 𝑒 ∧ ∪ 𝑒 ⊆ 𝑋 ) ∧ 𝑐 ∈ ( 𝑁 ‘ 𝑝 ) ) → ∪ 𝑒 ∈ ( 𝑁 ‘ 𝑝 ) ) ) |
| 54 | 53 | ad3antrrr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑒 ⊆ 𝐽 ) ∧ 𝑝 ∈ ∪ 𝑒 ) ∧ 𝑐 ∈ 𝑒 ) ∧ 𝑝 ∈ 𝑐 ) → ( ( ( ( 𝜑 ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑐 ⊆ ∪ 𝑒 ∧ ∪ 𝑒 ⊆ 𝑋 ) ∧ 𝑐 ∈ ( 𝑁 ‘ 𝑝 ) ) → ∪ 𝑒 ∈ ( 𝑁 ‘ 𝑝 ) ) ) |
| 55 | 20 27 54 | mp2and | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑒 ⊆ 𝐽 ) ∧ 𝑝 ∈ ∪ 𝑒 ) ∧ 𝑐 ∈ 𝑒 ) ∧ 𝑝 ∈ 𝑐 ) → ∪ 𝑒 ∈ ( 𝑁 ‘ 𝑝 ) ) |
| 56 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝑒 ⊆ 𝐽 ) ∧ 𝑝 ∈ ∪ 𝑒 ) → 𝑝 ∈ ∪ 𝑒 ) | |
| 57 | eluni2 | ⊢ ( 𝑝 ∈ ∪ 𝑒 ↔ ∃ 𝑐 ∈ 𝑒 𝑝 ∈ 𝑐 ) | |
| 58 | 56 57 | sylib | ⊢ ( ( ( 𝜑 ∧ 𝑒 ⊆ 𝐽 ) ∧ 𝑝 ∈ ∪ 𝑒 ) → ∃ 𝑐 ∈ 𝑒 𝑝 ∈ 𝑐 ) |
| 59 | 55 58 | r19.29a | ⊢ ( ( ( 𝜑 ∧ 𝑒 ⊆ 𝐽 ) ∧ 𝑝 ∈ ∪ 𝑒 ) → ∪ 𝑒 ∈ ( 𝑁 ‘ 𝑝 ) ) |
| 60 | 59 | ralrimiva | ⊢ ( ( 𝜑 ∧ 𝑒 ⊆ 𝐽 ) → ∀ 𝑝 ∈ ∪ 𝑒 ∪ 𝑒 ∈ ( 𝑁 ‘ 𝑝 ) ) |
| 61 | 1 | neipeltop | ⊢ ( ∪ 𝑒 ∈ 𝐽 ↔ ( ∪ 𝑒 ⊆ 𝑋 ∧ ∀ 𝑝 ∈ ∪ 𝑒 ∪ 𝑒 ∈ ( 𝑁 ‘ 𝑝 ) ) ) |
| 62 | 12 60 61 | sylanbrc | ⊢ ( ( 𝜑 ∧ 𝑒 ⊆ 𝐽 ) → ∪ 𝑒 ∈ 𝐽 ) |
| 63 | 62 | ex | ⊢ ( 𝜑 → ( 𝑒 ⊆ 𝐽 → ∪ 𝑒 ∈ 𝐽 ) ) |
| 64 | 63 | alrimiv | ⊢ ( 𝜑 → ∀ 𝑒 ( 𝑒 ⊆ 𝐽 → ∪ 𝑒 ∈ 𝐽 ) ) |
| 65 | inss1 | ⊢ ( 𝑒 ∩ 𝑓 ) ⊆ 𝑒 | |
| 66 | 1 | neipeltop | ⊢ ( 𝑒 ∈ 𝐽 ↔ ( 𝑒 ⊆ 𝑋 ∧ ∀ 𝑝 ∈ 𝑒 𝑒 ∈ ( 𝑁 ‘ 𝑝 ) ) ) |
| 67 | 66 | simplbi | ⊢ ( 𝑒 ∈ 𝐽 → 𝑒 ⊆ 𝑋 ) |
| 68 | 67 | ad2antlr | ⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ 𝐽 ) ∧ 𝑓 ∈ 𝐽 ) → 𝑒 ⊆ 𝑋 ) |
| 69 | 65 68 | sstrid | ⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ 𝐽 ) ∧ 𝑓 ∈ 𝐽 ) → ( 𝑒 ∩ 𝑓 ) ⊆ 𝑋 ) |
| 70 | simplll | ⊢ ( ( ( ( 𝜑 ∧ 𝑒 ∈ 𝐽 ) ∧ 𝑓 ∈ 𝐽 ) ∧ 𝑝 ∈ ( 𝑒 ∩ 𝑓 ) ) → 𝜑 ) | |
| 71 | simpllr | ⊢ ( ( ( ( 𝜑 ∧ 𝑒 ∈ 𝐽 ) ∧ 𝑓 ∈ 𝐽 ) ∧ 𝑝 ∈ ( 𝑒 ∩ 𝑓 ) ) → 𝑒 ∈ 𝐽 ) | |
| 72 | 71 67 | syl | ⊢ ( ( ( ( 𝜑 ∧ 𝑒 ∈ 𝐽 ) ∧ 𝑓 ∈ 𝐽 ) ∧ 𝑝 ∈ ( 𝑒 ∩ 𝑓 ) ) → 𝑒 ⊆ 𝑋 ) |
| 73 | simpr | ⊢ ( ( ( ( 𝜑 ∧ 𝑒 ∈ 𝐽 ) ∧ 𝑓 ∈ 𝐽 ) ∧ 𝑝 ∈ ( 𝑒 ∩ 𝑓 ) ) → 𝑝 ∈ ( 𝑒 ∩ 𝑓 ) ) | |
| 74 | 73 | elin1d | ⊢ ( ( ( ( 𝜑 ∧ 𝑒 ∈ 𝐽 ) ∧ 𝑓 ∈ 𝐽 ) ∧ 𝑝 ∈ ( 𝑒 ∩ 𝑓 ) ) → 𝑝 ∈ 𝑒 ) |
| 75 | 72 74 | sseldd | ⊢ ( ( ( ( 𝜑 ∧ 𝑒 ∈ 𝐽 ) ∧ 𝑓 ∈ 𝐽 ) ∧ 𝑝 ∈ ( 𝑒 ∩ 𝑓 ) ) → 𝑝 ∈ 𝑋 ) |
| 76 | 70 75 4 | syl2anc | ⊢ ( ( ( ( 𝜑 ∧ 𝑒 ∈ 𝐽 ) ∧ 𝑓 ∈ 𝐽 ) ∧ 𝑝 ∈ ( 𝑒 ∩ 𝑓 ) ) → ( fi ‘ ( 𝑁 ‘ 𝑝 ) ) ⊆ ( 𝑁 ‘ 𝑝 ) ) |
| 77 | fvex | ⊢ ( 𝑁 ‘ 𝑝 ) ∈ V | |
| 78 | 66 | simprbi | ⊢ ( 𝑒 ∈ 𝐽 → ∀ 𝑝 ∈ 𝑒 𝑒 ∈ ( 𝑁 ‘ 𝑝 ) ) |
| 79 | 78 | r19.21bi | ⊢ ( ( 𝑒 ∈ 𝐽 ∧ 𝑝 ∈ 𝑒 ) → 𝑒 ∈ ( 𝑁 ‘ 𝑝 ) ) |
| 80 | 71 74 79 | syl2anc | ⊢ ( ( ( ( 𝜑 ∧ 𝑒 ∈ 𝐽 ) ∧ 𝑓 ∈ 𝐽 ) ∧ 𝑝 ∈ ( 𝑒 ∩ 𝑓 ) ) → 𝑒 ∈ ( 𝑁 ‘ 𝑝 ) ) |
| 81 | simplr | ⊢ ( ( ( ( 𝜑 ∧ 𝑒 ∈ 𝐽 ) ∧ 𝑓 ∈ 𝐽 ) ∧ 𝑝 ∈ ( 𝑒 ∩ 𝑓 ) ) → 𝑓 ∈ 𝐽 ) | |
| 82 | 73 | elin2d | ⊢ ( ( ( ( 𝜑 ∧ 𝑒 ∈ 𝐽 ) ∧ 𝑓 ∈ 𝐽 ) ∧ 𝑝 ∈ ( 𝑒 ∩ 𝑓 ) ) → 𝑝 ∈ 𝑓 ) |
| 83 | 1 | neipeltop | ⊢ ( 𝑓 ∈ 𝐽 ↔ ( 𝑓 ⊆ 𝑋 ∧ ∀ 𝑝 ∈ 𝑓 𝑓 ∈ ( 𝑁 ‘ 𝑝 ) ) ) |
| 84 | 83 | simprbi | ⊢ ( 𝑓 ∈ 𝐽 → ∀ 𝑝 ∈ 𝑓 𝑓 ∈ ( 𝑁 ‘ 𝑝 ) ) |
| 85 | 84 | r19.21bi | ⊢ ( ( 𝑓 ∈ 𝐽 ∧ 𝑝 ∈ 𝑓 ) → 𝑓 ∈ ( 𝑁 ‘ 𝑝 ) ) |
| 86 | 81 82 85 | syl2anc | ⊢ ( ( ( ( 𝜑 ∧ 𝑒 ∈ 𝐽 ) ∧ 𝑓 ∈ 𝐽 ) ∧ 𝑝 ∈ ( 𝑒 ∩ 𝑓 ) ) → 𝑓 ∈ ( 𝑁 ‘ 𝑝 ) ) |
| 87 | inelfi | ⊢ ( ( ( 𝑁 ‘ 𝑝 ) ∈ V ∧ 𝑒 ∈ ( 𝑁 ‘ 𝑝 ) ∧ 𝑓 ∈ ( 𝑁 ‘ 𝑝 ) ) → ( 𝑒 ∩ 𝑓 ) ∈ ( fi ‘ ( 𝑁 ‘ 𝑝 ) ) ) | |
| 88 | 77 80 86 87 | mp3an2i | ⊢ ( ( ( ( 𝜑 ∧ 𝑒 ∈ 𝐽 ) ∧ 𝑓 ∈ 𝐽 ) ∧ 𝑝 ∈ ( 𝑒 ∩ 𝑓 ) ) → ( 𝑒 ∩ 𝑓 ) ∈ ( fi ‘ ( 𝑁 ‘ 𝑝 ) ) ) |
| 89 | 76 88 | sseldd | ⊢ ( ( ( ( 𝜑 ∧ 𝑒 ∈ 𝐽 ) ∧ 𝑓 ∈ 𝐽 ) ∧ 𝑝 ∈ ( 𝑒 ∩ 𝑓 ) ) → ( 𝑒 ∩ 𝑓 ) ∈ ( 𝑁 ‘ 𝑝 ) ) |
| 90 | 89 | ralrimiva | ⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ 𝐽 ) ∧ 𝑓 ∈ 𝐽 ) → ∀ 𝑝 ∈ ( 𝑒 ∩ 𝑓 ) ( 𝑒 ∩ 𝑓 ) ∈ ( 𝑁 ‘ 𝑝 ) ) |
| 91 | 1 | neipeltop | ⊢ ( ( 𝑒 ∩ 𝑓 ) ∈ 𝐽 ↔ ( ( 𝑒 ∩ 𝑓 ) ⊆ 𝑋 ∧ ∀ 𝑝 ∈ ( 𝑒 ∩ 𝑓 ) ( 𝑒 ∩ 𝑓 ) ∈ ( 𝑁 ‘ 𝑝 ) ) ) |
| 92 | 69 90 91 | sylanbrc | ⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ 𝐽 ) ∧ 𝑓 ∈ 𝐽 ) → ( 𝑒 ∩ 𝑓 ) ∈ 𝐽 ) |
| 93 | 92 | ralrimiva | ⊢ ( ( 𝜑 ∧ 𝑒 ∈ 𝐽 ) → ∀ 𝑓 ∈ 𝐽 ( 𝑒 ∩ 𝑓 ) ∈ 𝐽 ) |
| 94 | 93 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑒 ∈ 𝐽 ∀ 𝑓 ∈ 𝐽 ( 𝑒 ∩ 𝑓 ) ∈ 𝐽 ) |
| 95 | istopg | ⊢ ( 𝐽 ∈ V → ( 𝐽 ∈ Top ↔ ( ∀ 𝑒 ( 𝑒 ⊆ 𝐽 → ∪ 𝑒 ∈ 𝐽 ) ∧ ∀ 𝑒 ∈ 𝐽 ∀ 𝑓 ∈ 𝐽 ( 𝑒 ∩ 𝑓 ) ∈ 𝐽 ) ) ) | |
| 96 | 41 95 | syl | ⊢ ( 𝜑 → ( 𝐽 ∈ Top ↔ ( ∀ 𝑒 ( 𝑒 ⊆ 𝐽 → ∪ 𝑒 ∈ 𝐽 ) ∧ ∀ 𝑒 ∈ 𝐽 ∀ 𝑓 ∈ 𝐽 ( 𝑒 ∩ 𝑓 ) ∈ 𝐽 ) ) ) |
| 97 | 64 94 96 | mpbir2and | ⊢ ( 𝜑 → 𝐽 ∈ Top ) |