This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The intersection of two sets is a finite intersection. (Contributed by Thierry Arnoux, 6-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | inelfi | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 ∩ 𝐵 ) ∈ ( fi ‘ 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prelpwi | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → { 𝐴 , 𝐵 } ∈ 𝒫 𝑋 ) | |
| 2 | 1 | 3adant1 | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → { 𝐴 , 𝐵 } ∈ 𝒫 𝑋 ) |
| 3 | prfi | ⊢ { 𝐴 , 𝐵 } ∈ Fin | |
| 4 | 3 | a1i | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → { 𝐴 , 𝐵 } ∈ Fin ) |
| 5 | 2 4 | elind | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → { 𝐴 , 𝐵 } ∈ ( 𝒫 𝑋 ∩ Fin ) ) |
| 6 | intprg | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ∩ { 𝐴 , 𝐵 } = ( 𝐴 ∩ 𝐵 ) ) | |
| 7 | 6 | 3adant1 | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ∩ { 𝐴 , 𝐵 } = ( 𝐴 ∩ 𝐵 ) ) |
| 8 | 7 | eqcomd | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 ∩ 𝐵 ) = ∩ { 𝐴 , 𝐵 } ) |
| 9 | inteq | ⊢ ( 𝑝 = { 𝐴 , 𝐵 } → ∩ 𝑝 = ∩ { 𝐴 , 𝐵 } ) | |
| 10 | 9 | rspceeqv | ⊢ ( ( { 𝐴 , 𝐵 } ∈ ( 𝒫 𝑋 ∩ Fin ) ∧ ( 𝐴 ∩ 𝐵 ) = ∩ { 𝐴 , 𝐵 } ) → ∃ 𝑝 ∈ ( 𝒫 𝑋 ∩ Fin ) ( 𝐴 ∩ 𝐵 ) = ∩ 𝑝 ) |
| 11 | 5 8 10 | syl2anc | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ∃ 𝑝 ∈ ( 𝒫 𝑋 ∩ Fin ) ( 𝐴 ∩ 𝐵 ) = ∩ 𝑝 ) |
| 12 | inex1g | ⊢ ( 𝐴 ∈ 𝑋 → ( 𝐴 ∩ 𝐵 ) ∈ V ) | |
| 13 | 12 | 3ad2ant2 | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 ∩ 𝐵 ) ∈ V ) |
| 14 | simp1 | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → 𝑋 ∈ 𝑉 ) | |
| 15 | elfi | ⊢ ( ( ( 𝐴 ∩ 𝐵 ) ∈ V ∧ 𝑋 ∈ 𝑉 ) → ( ( 𝐴 ∩ 𝐵 ) ∈ ( fi ‘ 𝑋 ) ↔ ∃ 𝑝 ∈ ( 𝒫 𝑋 ∩ Fin ) ( 𝐴 ∩ 𝐵 ) = ∩ 𝑝 ) ) | |
| 16 | 13 14 15 | syl2anc | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝐴 ∩ 𝐵 ) ∈ ( fi ‘ 𝑋 ) ↔ ∃ 𝑝 ∈ ( 𝒫 𝑋 ∩ Fin ) ( 𝐴 ∩ 𝐵 ) = ∩ 𝑝 ) ) |
| 17 | 11 16 | mpbird | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 ∩ 𝐵 ) ∈ ( fi ‘ 𝑋 ) ) |