This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for neiptopreu . (Contributed by Thierry Arnoux, 6-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | neiptop.o | ⊢ 𝐽 = { 𝑎 ∈ 𝒫 𝑋 ∣ ∀ 𝑝 ∈ 𝑎 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) } | |
| neiptop.0 | ⊢ ( 𝜑 → 𝑁 : 𝑋 ⟶ 𝒫 𝒫 𝑋 ) | ||
| neiptop.1 | ⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋 ) ∧ 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ) → 𝑏 ∈ ( 𝑁 ‘ 𝑝 ) ) | ||
| neiptop.2 | ⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝑋 ) → ( fi ‘ ( 𝑁 ‘ 𝑝 ) ) ⊆ ( 𝑁 ‘ 𝑝 ) ) | ||
| neiptop.3 | ⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ) → 𝑝 ∈ 𝑎 ) | ||
| neiptop.4 | ⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ) → ∃ 𝑏 ∈ ( 𝑁 ‘ 𝑝 ) ∀ 𝑞 ∈ 𝑏 𝑎 ∈ ( 𝑁 ‘ 𝑞 ) ) | ||
| neiptop.5 | ⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝑋 ) → 𝑋 ∈ ( 𝑁 ‘ 𝑝 ) ) | ||
| Assertion | neiptopuni | ⊢ ( 𝜑 → 𝑋 = ∪ 𝐽 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neiptop.o | ⊢ 𝐽 = { 𝑎 ∈ 𝒫 𝑋 ∣ ∀ 𝑝 ∈ 𝑎 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) } | |
| 2 | neiptop.0 | ⊢ ( 𝜑 → 𝑁 : 𝑋 ⟶ 𝒫 𝒫 𝑋 ) | |
| 3 | neiptop.1 | ⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋 ) ∧ 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ) → 𝑏 ∈ ( 𝑁 ‘ 𝑝 ) ) | |
| 4 | neiptop.2 | ⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝑋 ) → ( fi ‘ ( 𝑁 ‘ 𝑝 ) ) ⊆ ( 𝑁 ‘ 𝑝 ) ) | |
| 5 | neiptop.3 | ⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ) → 𝑝 ∈ 𝑎 ) | |
| 6 | neiptop.4 | ⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ 𝑋 ) ∧ 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ) → ∃ 𝑏 ∈ ( 𝑁 ‘ 𝑝 ) ∀ 𝑞 ∈ 𝑏 𝑎 ∈ ( 𝑁 ‘ 𝑞 ) ) | |
| 7 | neiptop.5 | ⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝑋 ) → 𝑋 ∈ ( 𝑁 ‘ 𝑝 ) ) | |
| 8 | elpwi | ⊢ ( 𝑎 ∈ 𝒫 𝑋 → 𝑎 ⊆ 𝑋 ) | |
| 9 | 8 | ad2antlr | ⊢ ( ( ( 𝑝 ∈ ∪ 𝐽 ∧ 𝑎 ∈ 𝒫 𝑋 ) ∧ 𝑝 ∈ 𝑎 ) → 𝑎 ⊆ 𝑋 ) |
| 10 | simpr | ⊢ ( ( ( 𝑝 ∈ ∪ 𝐽 ∧ 𝑎 ∈ 𝒫 𝑋 ) ∧ 𝑝 ∈ 𝑎 ) → 𝑝 ∈ 𝑎 ) | |
| 11 | 9 10 | sseldd | ⊢ ( ( ( 𝑝 ∈ ∪ 𝐽 ∧ 𝑎 ∈ 𝒫 𝑋 ) ∧ 𝑝 ∈ 𝑎 ) → 𝑝 ∈ 𝑋 ) |
| 12 | 1 | unieqi | ⊢ ∪ 𝐽 = ∪ { 𝑎 ∈ 𝒫 𝑋 ∣ ∀ 𝑝 ∈ 𝑎 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) } |
| 13 | 12 | eleq2i | ⊢ ( 𝑝 ∈ ∪ 𝐽 ↔ 𝑝 ∈ ∪ { 𝑎 ∈ 𝒫 𝑋 ∣ ∀ 𝑝 ∈ 𝑎 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) } ) |
| 14 | elunirab | ⊢ ( 𝑝 ∈ ∪ { 𝑎 ∈ 𝒫 𝑋 ∣ ∀ 𝑝 ∈ 𝑎 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) } ↔ ∃ 𝑎 ∈ 𝒫 𝑋 ( 𝑝 ∈ 𝑎 ∧ ∀ 𝑝 ∈ 𝑎 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ) ) | |
| 15 | 13 14 | bitri | ⊢ ( 𝑝 ∈ ∪ 𝐽 ↔ ∃ 𝑎 ∈ 𝒫 𝑋 ( 𝑝 ∈ 𝑎 ∧ ∀ 𝑝 ∈ 𝑎 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ) ) |
| 16 | simpl | ⊢ ( ( 𝑝 ∈ 𝑎 ∧ ∀ 𝑝 ∈ 𝑎 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ) → 𝑝 ∈ 𝑎 ) | |
| 17 | 16 | reximi | ⊢ ( ∃ 𝑎 ∈ 𝒫 𝑋 ( 𝑝 ∈ 𝑎 ∧ ∀ 𝑝 ∈ 𝑎 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ) → ∃ 𝑎 ∈ 𝒫 𝑋 𝑝 ∈ 𝑎 ) |
| 18 | 15 17 | sylbi | ⊢ ( 𝑝 ∈ ∪ 𝐽 → ∃ 𝑎 ∈ 𝒫 𝑋 𝑝 ∈ 𝑎 ) |
| 19 | 11 18 | r19.29a | ⊢ ( 𝑝 ∈ ∪ 𝐽 → 𝑝 ∈ 𝑋 ) |
| 20 | 19 | a1i | ⊢ ( 𝜑 → ( 𝑝 ∈ ∪ 𝐽 → 𝑝 ∈ 𝑋 ) ) |
| 21 | 20 | ssrdv | ⊢ ( 𝜑 → ∪ 𝐽 ⊆ 𝑋 ) |
| 22 | ssidd | ⊢ ( 𝜑 → 𝑋 ⊆ 𝑋 ) | |
| 23 | 7 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑝 ∈ 𝑋 𝑋 ∈ ( 𝑁 ‘ 𝑝 ) ) |
| 24 | 1 | neipeltop | ⊢ ( 𝑋 ∈ 𝐽 ↔ ( 𝑋 ⊆ 𝑋 ∧ ∀ 𝑝 ∈ 𝑋 𝑋 ∈ ( 𝑁 ‘ 𝑝 ) ) ) |
| 25 | 22 23 24 | sylanbrc | ⊢ ( 𝜑 → 𝑋 ∈ 𝐽 ) |
| 26 | unissel | ⊢ ( ( ∪ 𝐽 ⊆ 𝑋 ∧ 𝑋 ∈ 𝐽 ) → ∪ 𝐽 = 𝑋 ) | |
| 27 | 21 25 26 | syl2anc | ⊢ ( 𝜑 → ∪ 𝐽 = 𝑋 ) |
| 28 | 27 | eqcomd | ⊢ ( 𝜑 → 𝑋 = ∪ 𝐽 ) |