This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for neiptopreu . (Contributed by Thierry Arnoux, 6-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | neiptop.o | ⊢ 𝐽 = { 𝑎 ∈ 𝒫 𝑋 ∣ ∀ 𝑝 ∈ 𝑎 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) } | |
| Assertion | neipeltop | ⊢ ( 𝐶 ∈ 𝐽 ↔ ( 𝐶 ⊆ 𝑋 ∧ ∀ 𝑝 ∈ 𝐶 𝐶 ∈ ( 𝑁 ‘ 𝑝 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neiptop.o | ⊢ 𝐽 = { 𝑎 ∈ 𝒫 𝑋 ∣ ∀ 𝑝 ∈ 𝑎 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) } | |
| 2 | eleq1 | ⊢ ( 𝑎 = 𝐶 → ( 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ↔ 𝐶 ∈ ( 𝑁 ‘ 𝑝 ) ) ) | |
| 3 | 2 | raleqbi1dv | ⊢ ( 𝑎 = 𝐶 → ( ∀ 𝑝 ∈ 𝑎 𝑎 ∈ ( 𝑁 ‘ 𝑝 ) ↔ ∀ 𝑝 ∈ 𝐶 𝐶 ∈ ( 𝑁 ‘ 𝑝 ) ) ) |
| 4 | 3 1 | elrab2 | ⊢ ( 𝐶 ∈ 𝐽 ↔ ( 𝐶 ∈ 𝒫 𝑋 ∧ ∀ 𝑝 ∈ 𝐶 𝐶 ∈ ( 𝑁 ‘ 𝑝 ) ) ) |
| 5 | 0ex | ⊢ ∅ ∈ V | |
| 6 | eleq1 | ⊢ ( 𝐶 = ∅ → ( 𝐶 ∈ V ↔ ∅ ∈ V ) ) | |
| 7 | 5 6 | mpbiri | ⊢ ( 𝐶 = ∅ → 𝐶 ∈ V ) |
| 8 | 7 | adantl | ⊢ ( ( ∀ 𝑝 ∈ 𝐶 𝐶 ∈ ( 𝑁 ‘ 𝑝 ) ∧ 𝐶 = ∅ ) → 𝐶 ∈ V ) |
| 9 | elex | ⊢ ( 𝐶 ∈ ( 𝑁 ‘ 𝑝 ) → 𝐶 ∈ V ) | |
| 10 | 9 | ralimi | ⊢ ( ∀ 𝑝 ∈ 𝐶 𝐶 ∈ ( 𝑁 ‘ 𝑝 ) → ∀ 𝑝 ∈ 𝐶 𝐶 ∈ V ) |
| 11 | r19.3rzv | ⊢ ( 𝐶 ≠ ∅ → ( 𝐶 ∈ V ↔ ∀ 𝑝 ∈ 𝐶 𝐶 ∈ V ) ) | |
| 12 | 11 | biimparc | ⊢ ( ( ∀ 𝑝 ∈ 𝐶 𝐶 ∈ V ∧ 𝐶 ≠ ∅ ) → 𝐶 ∈ V ) |
| 13 | 10 12 | sylan | ⊢ ( ( ∀ 𝑝 ∈ 𝐶 𝐶 ∈ ( 𝑁 ‘ 𝑝 ) ∧ 𝐶 ≠ ∅ ) → 𝐶 ∈ V ) |
| 14 | 8 13 | pm2.61dane | ⊢ ( ∀ 𝑝 ∈ 𝐶 𝐶 ∈ ( 𝑁 ‘ 𝑝 ) → 𝐶 ∈ V ) |
| 15 | elpwg | ⊢ ( 𝐶 ∈ V → ( 𝐶 ∈ 𝒫 𝑋 ↔ 𝐶 ⊆ 𝑋 ) ) | |
| 16 | 14 15 | syl | ⊢ ( ∀ 𝑝 ∈ 𝐶 𝐶 ∈ ( 𝑁 ‘ 𝑝 ) → ( 𝐶 ∈ 𝒫 𝑋 ↔ 𝐶 ⊆ 𝑋 ) ) |
| 17 | 16 | pm5.32ri | ⊢ ( ( 𝐶 ∈ 𝒫 𝑋 ∧ ∀ 𝑝 ∈ 𝐶 𝐶 ∈ ( 𝑁 ‘ 𝑝 ) ) ↔ ( 𝐶 ⊆ 𝑋 ∧ ∀ 𝑝 ∈ 𝐶 𝐶 ∈ ( 𝑁 ‘ 𝑝 ) ) ) |
| 18 | 4 17 | bitri | ⊢ ( 𝐶 ∈ 𝐽 ↔ ( 𝐶 ⊆ 𝑋 ∧ ∀ 𝑝 ∈ 𝐶 𝐶 ∈ ( 𝑁 ‘ 𝑝 ) ) ) |