This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: For a point A in X , ( V " { A } ) is small enough in ( V o.`' V ) ` . This proposition actually does not require any axiom of the definition of uniform structures. (Contributed by Thierry Arnoux, 18-Nov-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ustneism | ⊢ ( ( 𝑉 ⊆ ( 𝑋 × 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑉 “ { 𝐴 } ) × ( 𝑉 “ { 𝐴 } ) ) ⊆ ( 𝑉 ∘ ◡ 𝑉 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snnzg | ⊢ ( 𝐴 ∈ 𝑋 → { 𝐴 } ≠ ∅ ) | |
| 2 | 1 | adantl | ⊢ ( ( 𝑉 ⊆ ( 𝑋 × 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) → { 𝐴 } ≠ ∅ ) |
| 3 | xpco | ⊢ ( { 𝐴 } ≠ ∅ → ( ( { 𝐴 } × ( 𝑉 “ { 𝐴 } ) ) ∘ ( ( 𝑉 “ { 𝐴 } ) × { 𝐴 } ) ) = ( ( 𝑉 “ { 𝐴 } ) × ( 𝑉 “ { 𝐴 } ) ) ) | |
| 4 | 2 3 | syl | ⊢ ( ( 𝑉 ⊆ ( 𝑋 × 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) → ( ( { 𝐴 } × ( 𝑉 “ { 𝐴 } ) ) ∘ ( ( 𝑉 “ { 𝐴 } ) × { 𝐴 } ) ) = ( ( 𝑉 “ { 𝐴 } ) × ( 𝑉 “ { 𝐴 } ) ) ) |
| 5 | cnvxp | ⊢ ◡ ( { 𝐴 } × ( 𝑉 “ { 𝐴 } ) ) = ( ( 𝑉 “ { 𝐴 } ) × { 𝐴 } ) | |
| 6 | ressn | ⊢ ( 𝑉 ↾ { 𝐴 } ) = ( { 𝐴 } × ( 𝑉 “ { 𝐴 } ) ) | |
| 7 | 6 | cnveqi | ⊢ ◡ ( 𝑉 ↾ { 𝐴 } ) = ◡ ( { 𝐴 } × ( 𝑉 “ { 𝐴 } ) ) |
| 8 | resss | ⊢ ( 𝑉 ↾ { 𝐴 } ) ⊆ 𝑉 | |
| 9 | cnvss | ⊢ ( ( 𝑉 ↾ { 𝐴 } ) ⊆ 𝑉 → ◡ ( 𝑉 ↾ { 𝐴 } ) ⊆ ◡ 𝑉 ) | |
| 10 | 8 9 | ax-mp | ⊢ ◡ ( 𝑉 ↾ { 𝐴 } ) ⊆ ◡ 𝑉 |
| 11 | 7 10 | eqsstrri | ⊢ ◡ ( { 𝐴 } × ( 𝑉 “ { 𝐴 } ) ) ⊆ ◡ 𝑉 |
| 12 | 5 11 | eqsstrri | ⊢ ( ( 𝑉 “ { 𝐴 } ) × { 𝐴 } ) ⊆ ◡ 𝑉 |
| 13 | coss2 | ⊢ ( ( ( 𝑉 “ { 𝐴 } ) × { 𝐴 } ) ⊆ ◡ 𝑉 → ( ( { 𝐴 } × ( 𝑉 “ { 𝐴 } ) ) ∘ ( ( 𝑉 “ { 𝐴 } ) × { 𝐴 } ) ) ⊆ ( ( { 𝐴 } × ( 𝑉 “ { 𝐴 } ) ) ∘ ◡ 𝑉 ) ) | |
| 14 | 12 13 | mp1i | ⊢ ( ( 𝑉 ⊆ ( 𝑋 × 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) → ( ( { 𝐴 } × ( 𝑉 “ { 𝐴 } ) ) ∘ ( ( 𝑉 “ { 𝐴 } ) × { 𝐴 } ) ) ⊆ ( ( { 𝐴 } × ( 𝑉 “ { 𝐴 } ) ) ∘ ◡ 𝑉 ) ) |
| 15 | 6 8 | eqsstrri | ⊢ ( { 𝐴 } × ( 𝑉 “ { 𝐴 } ) ) ⊆ 𝑉 |
| 16 | coss1 | ⊢ ( ( { 𝐴 } × ( 𝑉 “ { 𝐴 } ) ) ⊆ 𝑉 → ( ( { 𝐴 } × ( 𝑉 “ { 𝐴 } ) ) ∘ ◡ 𝑉 ) ⊆ ( 𝑉 ∘ ◡ 𝑉 ) ) | |
| 17 | 15 16 | mp1i | ⊢ ( ( 𝑉 ⊆ ( 𝑋 × 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) → ( ( { 𝐴 } × ( 𝑉 “ { 𝐴 } ) ) ∘ ◡ 𝑉 ) ⊆ ( 𝑉 ∘ ◡ 𝑉 ) ) |
| 18 | 14 17 | sstrd | ⊢ ( ( 𝑉 ⊆ ( 𝑋 × 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) → ( ( { 𝐴 } × ( 𝑉 “ { 𝐴 } ) ) ∘ ( ( 𝑉 “ { 𝐴 } ) × { 𝐴 } ) ) ⊆ ( 𝑉 ∘ ◡ 𝑉 ) ) |
| 19 | 4 18 | eqsstrrd | ⊢ ( ( 𝑉 ⊆ ( 𝑋 × 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑉 “ { 𝐴 } ) × ( 𝑉 “ { 𝐴 } ) ) ⊆ ( 𝑉 ∘ ◡ 𝑉 ) ) |