This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In an uniform structure, for any entourage V , there exists a smaller symmetrical entourage. (Contributed by Thierry Arnoux, 4-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ustexsym | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ) → ∃ 𝑤 ∈ 𝑈 ( ◡ 𝑤 = 𝑤 ∧ 𝑤 ⊆ 𝑉 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simplll | ⊢ ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ) ∧ 𝑥 ∈ 𝑈 ) ∧ ( 𝑥 ∘ 𝑥 ) ⊆ 𝑉 ) → 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ) | |
| 2 | ustinvel | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑈 ) → ◡ 𝑥 ∈ 𝑈 ) | |
| 3 | 2 | ad4ant13 | ⊢ ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ) ∧ 𝑥 ∈ 𝑈 ) ∧ ( 𝑥 ∘ 𝑥 ) ⊆ 𝑉 ) → ◡ 𝑥 ∈ 𝑈 ) |
| 4 | simplr | ⊢ ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ) ∧ 𝑥 ∈ 𝑈 ) ∧ ( 𝑥 ∘ 𝑥 ) ⊆ 𝑉 ) → 𝑥 ∈ 𝑈 ) | |
| 5 | ustincl | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ◡ 𝑥 ∈ 𝑈 ∧ 𝑥 ∈ 𝑈 ) → ( ◡ 𝑥 ∩ 𝑥 ) ∈ 𝑈 ) | |
| 6 | 1 3 4 5 | syl3anc | ⊢ ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ) ∧ 𝑥 ∈ 𝑈 ) ∧ ( 𝑥 ∘ 𝑥 ) ⊆ 𝑉 ) → ( ◡ 𝑥 ∩ 𝑥 ) ∈ 𝑈 ) |
| 7 | ustrel | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑈 ) → Rel 𝑥 ) | |
| 8 | dfrel2 | ⊢ ( Rel 𝑥 ↔ ◡ ◡ 𝑥 = 𝑥 ) | |
| 9 | 7 8 | sylib | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑈 ) → ◡ ◡ 𝑥 = 𝑥 ) |
| 10 | 9 | ineq1d | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑈 ) → ( ◡ ◡ 𝑥 ∩ ◡ 𝑥 ) = ( 𝑥 ∩ ◡ 𝑥 ) ) |
| 11 | cnvin | ⊢ ◡ ( ◡ 𝑥 ∩ 𝑥 ) = ( ◡ ◡ 𝑥 ∩ ◡ 𝑥 ) | |
| 12 | incom | ⊢ ( ◡ 𝑥 ∩ 𝑥 ) = ( 𝑥 ∩ ◡ 𝑥 ) | |
| 13 | 10 11 12 | 3eqtr4g | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑈 ) → ◡ ( ◡ 𝑥 ∩ 𝑥 ) = ( ◡ 𝑥 ∩ 𝑥 ) ) |
| 14 | 13 | ad4ant13 | ⊢ ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ) ∧ 𝑥 ∈ 𝑈 ) ∧ ( 𝑥 ∘ 𝑥 ) ⊆ 𝑉 ) → ◡ ( ◡ 𝑥 ∩ 𝑥 ) = ( ◡ 𝑥 ∩ 𝑥 ) ) |
| 15 | inss2 | ⊢ ( ◡ 𝑥 ∩ 𝑥 ) ⊆ 𝑥 | |
| 16 | ustssco | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑈 ) → 𝑥 ⊆ ( 𝑥 ∘ 𝑥 ) ) | |
| 17 | 16 | ad4ant13 | ⊢ ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ) ∧ 𝑥 ∈ 𝑈 ) ∧ ( 𝑥 ∘ 𝑥 ) ⊆ 𝑉 ) → 𝑥 ⊆ ( 𝑥 ∘ 𝑥 ) ) |
| 18 | simpr | ⊢ ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ) ∧ 𝑥 ∈ 𝑈 ) ∧ ( 𝑥 ∘ 𝑥 ) ⊆ 𝑉 ) → ( 𝑥 ∘ 𝑥 ) ⊆ 𝑉 ) | |
| 19 | 17 18 | sstrd | ⊢ ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ) ∧ 𝑥 ∈ 𝑈 ) ∧ ( 𝑥 ∘ 𝑥 ) ⊆ 𝑉 ) → 𝑥 ⊆ 𝑉 ) |
| 20 | 15 19 | sstrid | ⊢ ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ) ∧ 𝑥 ∈ 𝑈 ) ∧ ( 𝑥 ∘ 𝑥 ) ⊆ 𝑉 ) → ( ◡ 𝑥 ∩ 𝑥 ) ⊆ 𝑉 ) |
| 21 | cnveq | ⊢ ( 𝑤 = ( ◡ 𝑥 ∩ 𝑥 ) → ◡ 𝑤 = ◡ ( ◡ 𝑥 ∩ 𝑥 ) ) | |
| 22 | id | ⊢ ( 𝑤 = ( ◡ 𝑥 ∩ 𝑥 ) → 𝑤 = ( ◡ 𝑥 ∩ 𝑥 ) ) | |
| 23 | 21 22 | eqeq12d | ⊢ ( 𝑤 = ( ◡ 𝑥 ∩ 𝑥 ) → ( ◡ 𝑤 = 𝑤 ↔ ◡ ( ◡ 𝑥 ∩ 𝑥 ) = ( ◡ 𝑥 ∩ 𝑥 ) ) ) |
| 24 | sseq1 | ⊢ ( 𝑤 = ( ◡ 𝑥 ∩ 𝑥 ) → ( 𝑤 ⊆ 𝑉 ↔ ( ◡ 𝑥 ∩ 𝑥 ) ⊆ 𝑉 ) ) | |
| 25 | 23 24 | anbi12d | ⊢ ( 𝑤 = ( ◡ 𝑥 ∩ 𝑥 ) → ( ( ◡ 𝑤 = 𝑤 ∧ 𝑤 ⊆ 𝑉 ) ↔ ( ◡ ( ◡ 𝑥 ∩ 𝑥 ) = ( ◡ 𝑥 ∩ 𝑥 ) ∧ ( ◡ 𝑥 ∩ 𝑥 ) ⊆ 𝑉 ) ) ) |
| 26 | 25 | rspcev | ⊢ ( ( ( ◡ 𝑥 ∩ 𝑥 ) ∈ 𝑈 ∧ ( ◡ ( ◡ 𝑥 ∩ 𝑥 ) = ( ◡ 𝑥 ∩ 𝑥 ) ∧ ( ◡ 𝑥 ∩ 𝑥 ) ⊆ 𝑉 ) ) → ∃ 𝑤 ∈ 𝑈 ( ◡ 𝑤 = 𝑤 ∧ 𝑤 ⊆ 𝑉 ) ) |
| 27 | 6 14 20 26 | syl12anc | ⊢ ( ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ) ∧ 𝑥 ∈ 𝑈 ) ∧ ( 𝑥 ∘ 𝑥 ) ⊆ 𝑉 ) → ∃ 𝑤 ∈ 𝑈 ( ◡ 𝑤 = 𝑤 ∧ 𝑤 ⊆ 𝑉 ) ) |
| 28 | ustexhalf | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ) → ∃ 𝑥 ∈ 𝑈 ( 𝑥 ∘ 𝑥 ) ⊆ 𝑉 ) | |
| 29 | 27 28 | r19.29a | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ 𝑈 ) → ∃ 𝑤 ∈ 𝑈 ( ◡ 𝑤 = 𝑤 ∧ 𝑤 ⊆ 𝑉 ) ) |