This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a graph has two vertices, and there is an edge between the vertices, then each vertex is the neighbor of the other vertex. (Contributed by AV, 2-Nov-2020) (Revised by AV, 25-Mar-2021) (Proof shortened by AV, 13-Feb-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nbgr2vtx1edg.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| nbgr2vtx1edg.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | ||
| Assertion | nbgr2vtx1edg | ⊢ ( ( ( ♯ ‘ 𝑉 ) = 2 ∧ 𝑉 ∈ 𝐸 ) → ∀ 𝑣 ∈ 𝑉 ∀ 𝑛 ∈ ( 𝑉 ∖ { 𝑣 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑣 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nbgr2vtx1edg.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | nbgr2vtx1edg.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | |
| 3 | 1 | fvexi | ⊢ 𝑉 ∈ V |
| 4 | hash2prb | ⊢ ( 𝑉 ∈ V → ( ( ♯ ‘ 𝑉 ) = 2 ↔ ∃ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 ( 𝑎 ≠ 𝑏 ∧ 𝑉 = { 𝑎 , 𝑏 } ) ) ) | |
| 5 | 3 4 | ax-mp | ⊢ ( ( ♯ ‘ 𝑉 ) = 2 ↔ ∃ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 ( 𝑎 ≠ 𝑏 ∧ 𝑉 = { 𝑎 , 𝑏 } ) ) |
| 6 | simpll | ⊢ ( ( ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑉 = { 𝑎 , 𝑏 } ) ) ∧ { 𝑎 , 𝑏 } ∈ 𝐸 ) → ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) | |
| 7 | 6 | ancomd | ⊢ ( ( ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑉 = { 𝑎 , 𝑏 } ) ) ∧ { 𝑎 , 𝑏 } ∈ 𝐸 ) → ( 𝑏 ∈ 𝑉 ∧ 𝑎 ∈ 𝑉 ) ) |
| 8 | simpl | ⊢ ( ( 𝑎 ≠ 𝑏 ∧ 𝑉 = { 𝑎 , 𝑏 } ) → 𝑎 ≠ 𝑏 ) | |
| 9 | 8 | necomd | ⊢ ( ( 𝑎 ≠ 𝑏 ∧ 𝑉 = { 𝑎 , 𝑏 } ) → 𝑏 ≠ 𝑎 ) |
| 10 | 9 | ad2antlr | ⊢ ( ( ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑉 = { 𝑎 , 𝑏 } ) ) ∧ { 𝑎 , 𝑏 } ∈ 𝐸 ) → 𝑏 ≠ 𝑎 ) |
| 11 | id | ⊢ ( { 𝑎 , 𝑏 } ∈ 𝐸 → { 𝑎 , 𝑏 } ∈ 𝐸 ) | |
| 12 | sseq2 | ⊢ ( 𝑒 = { 𝑎 , 𝑏 } → ( { 𝑎 , 𝑏 } ⊆ 𝑒 ↔ { 𝑎 , 𝑏 } ⊆ { 𝑎 , 𝑏 } ) ) | |
| 13 | 12 | adantl | ⊢ ( ( { 𝑎 , 𝑏 } ∈ 𝐸 ∧ 𝑒 = { 𝑎 , 𝑏 } ) → ( { 𝑎 , 𝑏 } ⊆ 𝑒 ↔ { 𝑎 , 𝑏 } ⊆ { 𝑎 , 𝑏 } ) ) |
| 14 | ssidd | ⊢ ( { 𝑎 , 𝑏 } ∈ 𝐸 → { 𝑎 , 𝑏 } ⊆ { 𝑎 , 𝑏 } ) | |
| 15 | 11 13 14 | rspcedvd | ⊢ ( { 𝑎 , 𝑏 } ∈ 𝐸 → ∃ 𝑒 ∈ 𝐸 { 𝑎 , 𝑏 } ⊆ 𝑒 ) |
| 16 | 15 | adantl | ⊢ ( ( ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑉 = { 𝑎 , 𝑏 } ) ) ∧ { 𝑎 , 𝑏 } ∈ 𝐸 ) → ∃ 𝑒 ∈ 𝐸 { 𝑎 , 𝑏 } ⊆ 𝑒 ) |
| 17 | 1 2 | nbgrel | ⊢ ( 𝑏 ∈ ( 𝐺 NeighbVtx 𝑎 ) ↔ ( ( 𝑏 ∈ 𝑉 ∧ 𝑎 ∈ 𝑉 ) ∧ 𝑏 ≠ 𝑎 ∧ ∃ 𝑒 ∈ 𝐸 { 𝑎 , 𝑏 } ⊆ 𝑒 ) ) |
| 18 | 7 10 16 17 | syl3anbrc | ⊢ ( ( ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑉 = { 𝑎 , 𝑏 } ) ) ∧ { 𝑎 , 𝑏 } ∈ 𝐸 ) → 𝑏 ∈ ( 𝐺 NeighbVtx 𝑎 ) ) |
| 19 | 8 | ad2antlr | ⊢ ( ( ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑉 = { 𝑎 , 𝑏 } ) ) ∧ { 𝑎 , 𝑏 } ∈ 𝐸 ) → 𝑎 ≠ 𝑏 ) |
| 20 | sseq2 | ⊢ ( 𝑒 = { 𝑎 , 𝑏 } → ( { 𝑏 , 𝑎 } ⊆ 𝑒 ↔ { 𝑏 , 𝑎 } ⊆ { 𝑎 , 𝑏 } ) ) | |
| 21 | 20 | adantl | ⊢ ( ( { 𝑎 , 𝑏 } ∈ 𝐸 ∧ 𝑒 = { 𝑎 , 𝑏 } ) → ( { 𝑏 , 𝑎 } ⊆ 𝑒 ↔ { 𝑏 , 𝑎 } ⊆ { 𝑎 , 𝑏 } ) ) |
| 22 | prcom | ⊢ { 𝑏 , 𝑎 } = { 𝑎 , 𝑏 } | |
| 23 | 22 | eqimssi | ⊢ { 𝑏 , 𝑎 } ⊆ { 𝑎 , 𝑏 } |
| 24 | 23 | a1i | ⊢ ( { 𝑎 , 𝑏 } ∈ 𝐸 → { 𝑏 , 𝑎 } ⊆ { 𝑎 , 𝑏 } ) |
| 25 | 11 21 24 | rspcedvd | ⊢ ( { 𝑎 , 𝑏 } ∈ 𝐸 → ∃ 𝑒 ∈ 𝐸 { 𝑏 , 𝑎 } ⊆ 𝑒 ) |
| 26 | 25 | adantl | ⊢ ( ( ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑉 = { 𝑎 , 𝑏 } ) ) ∧ { 𝑎 , 𝑏 } ∈ 𝐸 ) → ∃ 𝑒 ∈ 𝐸 { 𝑏 , 𝑎 } ⊆ 𝑒 ) |
| 27 | 1 2 | nbgrel | ⊢ ( 𝑎 ∈ ( 𝐺 NeighbVtx 𝑏 ) ↔ ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ 𝑎 ≠ 𝑏 ∧ ∃ 𝑒 ∈ 𝐸 { 𝑏 , 𝑎 } ⊆ 𝑒 ) ) |
| 28 | 6 19 26 27 | syl3anbrc | ⊢ ( ( ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑉 = { 𝑎 , 𝑏 } ) ) ∧ { 𝑎 , 𝑏 } ∈ 𝐸 ) → 𝑎 ∈ ( 𝐺 NeighbVtx 𝑏 ) ) |
| 29 | difprsn1 | ⊢ ( 𝑎 ≠ 𝑏 → ( { 𝑎 , 𝑏 } ∖ { 𝑎 } ) = { 𝑏 } ) | |
| 30 | 29 | raleqdv | ⊢ ( 𝑎 ≠ 𝑏 → ( ∀ 𝑛 ∈ ( { 𝑎 , 𝑏 } ∖ { 𝑎 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑎 ) ↔ ∀ 𝑛 ∈ { 𝑏 } 𝑛 ∈ ( 𝐺 NeighbVtx 𝑎 ) ) ) |
| 31 | vex | ⊢ 𝑏 ∈ V | |
| 32 | eleq1 | ⊢ ( 𝑛 = 𝑏 → ( 𝑛 ∈ ( 𝐺 NeighbVtx 𝑎 ) ↔ 𝑏 ∈ ( 𝐺 NeighbVtx 𝑎 ) ) ) | |
| 33 | 31 32 | ralsn | ⊢ ( ∀ 𝑛 ∈ { 𝑏 } 𝑛 ∈ ( 𝐺 NeighbVtx 𝑎 ) ↔ 𝑏 ∈ ( 𝐺 NeighbVtx 𝑎 ) ) |
| 34 | 30 33 | bitrdi | ⊢ ( 𝑎 ≠ 𝑏 → ( ∀ 𝑛 ∈ ( { 𝑎 , 𝑏 } ∖ { 𝑎 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑎 ) ↔ 𝑏 ∈ ( 𝐺 NeighbVtx 𝑎 ) ) ) |
| 35 | difprsn2 | ⊢ ( 𝑎 ≠ 𝑏 → ( { 𝑎 , 𝑏 } ∖ { 𝑏 } ) = { 𝑎 } ) | |
| 36 | 35 | raleqdv | ⊢ ( 𝑎 ≠ 𝑏 → ( ∀ 𝑛 ∈ ( { 𝑎 , 𝑏 } ∖ { 𝑏 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑏 ) ↔ ∀ 𝑛 ∈ { 𝑎 } 𝑛 ∈ ( 𝐺 NeighbVtx 𝑏 ) ) ) |
| 37 | vex | ⊢ 𝑎 ∈ V | |
| 38 | eleq1 | ⊢ ( 𝑛 = 𝑎 → ( 𝑛 ∈ ( 𝐺 NeighbVtx 𝑏 ) ↔ 𝑎 ∈ ( 𝐺 NeighbVtx 𝑏 ) ) ) | |
| 39 | 37 38 | ralsn | ⊢ ( ∀ 𝑛 ∈ { 𝑎 } 𝑛 ∈ ( 𝐺 NeighbVtx 𝑏 ) ↔ 𝑎 ∈ ( 𝐺 NeighbVtx 𝑏 ) ) |
| 40 | 36 39 | bitrdi | ⊢ ( 𝑎 ≠ 𝑏 → ( ∀ 𝑛 ∈ ( { 𝑎 , 𝑏 } ∖ { 𝑏 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑏 ) ↔ 𝑎 ∈ ( 𝐺 NeighbVtx 𝑏 ) ) ) |
| 41 | 34 40 | anbi12d | ⊢ ( 𝑎 ≠ 𝑏 → ( ( ∀ 𝑛 ∈ ( { 𝑎 , 𝑏 } ∖ { 𝑎 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑎 ) ∧ ∀ 𝑛 ∈ ( { 𝑎 , 𝑏 } ∖ { 𝑏 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑏 ) ) ↔ ( 𝑏 ∈ ( 𝐺 NeighbVtx 𝑎 ) ∧ 𝑎 ∈ ( 𝐺 NeighbVtx 𝑏 ) ) ) ) |
| 42 | 41 | adantr | ⊢ ( ( 𝑎 ≠ 𝑏 ∧ 𝑉 = { 𝑎 , 𝑏 } ) → ( ( ∀ 𝑛 ∈ ( { 𝑎 , 𝑏 } ∖ { 𝑎 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑎 ) ∧ ∀ 𝑛 ∈ ( { 𝑎 , 𝑏 } ∖ { 𝑏 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑏 ) ) ↔ ( 𝑏 ∈ ( 𝐺 NeighbVtx 𝑎 ) ∧ 𝑎 ∈ ( 𝐺 NeighbVtx 𝑏 ) ) ) ) |
| 43 | 42 | ad2antlr | ⊢ ( ( ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑉 = { 𝑎 , 𝑏 } ) ) ∧ { 𝑎 , 𝑏 } ∈ 𝐸 ) → ( ( ∀ 𝑛 ∈ ( { 𝑎 , 𝑏 } ∖ { 𝑎 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑎 ) ∧ ∀ 𝑛 ∈ ( { 𝑎 , 𝑏 } ∖ { 𝑏 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑏 ) ) ↔ ( 𝑏 ∈ ( 𝐺 NeighbVtx 𝑎 ) ∧ 𝑎 ∈ ( 𝐺 NeighbVtx 𝑏 ) ) ) ) |
| 44 | 18 28 43 | mpbir2and | ⊢ ( ( ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑉 = { 𝑎 , 𝑏 } ) ) ∧ { 𝑎 , 𝑏 } ∈ 𝐸 ) → ( ∀ 𝑛 ∈ ( { 𝑎 , 𝑏 } ∖ { 𝑎 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑎 ) ∧ ∀ 𝑛 ∈ ( { 𝑎 , 𝑏 } ∖ { 𝑏 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑏 ) ) ) |
| 45 | 44 | ex | ⊢ ( ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑉 = { 𝑎 , 𝑏 } ) ) → ( { 𝑎 , 𝑏 } ∈ 𝐸 → ( ∀ 𝑛 ∈ ( { 𝑎 , 𝑏 } ∖ { 𝑎 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑎 ) ∧ ∀ 𝑛 ∈ ( { 𝑎 , 𝑏 } ∖ { 𝑏 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑏 ) ) ) ) |
| 46 | eleq1 | ⊢ ( 𝑉 = { 𝑎 , 𝑏 } → ( 𝑉 ∈ 𝐸 ↔ { 𝑎 , 𝑏 } ∈ 𝐸 ) ) | |
| 47 | id | ⊢ ( 𝑉 = { 𝑎 , 𝑏 } → 𝑉 = { 𝑎 , 𝑏 } ) | |
| 48 | difeq1 | ⊢ ( 𝑉 = { 𝑎 , 𝑏 } → ( 𝑉 ∖ { 𝑣 } ) = ( { 𝑎 , 𝑏 } ∖ { 𝑣 } ) ) | |
| 49 | 48 | raleqdv | ⊢ ( 𝑉 = { 𝑎 , 𝑏 } → ( ∀ 𝑛 ∈ ( 𝑉 ∖ { 𝑣 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑣 ) ↔ ∀ 𝑛 ∈ ( { 𝑎 , 𝑏 } ∖ { 𝑣 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑣 ) ) ) |
| 50 | 47 49 | raleqbidv | ⊢ ( 𝑉 = { 𝑎 , 𝑏 } → ( ∀ 𝑣 ∈ 𝑉 ∀ 𝑛 ∈ ( 𝑉 ∖ { 𝑣 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑣 ) ↔ ∀ 𝑣 ∈ { 𝑎 , 𝑏 } ∀ 𝑛 ∈ ( { 𝑎 , 𝑏 } ∖ { 𝑣 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑣 ) ) ) |
| 51 | sneq | ⊢ ( 𝑣 = 𝑎 → { 𝑣 } = { 𝑎 } ) | |
| 52 | 51 | difeq2d | ⊢ ( 𝑣 = 𝑎 → ( { 𝑎 , 𝑏 } ∖ { 𝑣 } ) = ( { 𝑎 , 𝑏 } ∖ { 𝑎 } ) ) |
| 53 | oveq2 | ⊢ ( 𝑣 = 𝑎 → ( 𝐺 NeighbVtx 𝑣 ) = ( 𝐺 NeighbVtx 𝑎 ) ) | |
| 54 | 53 | eleq2d | ⊢ ( 𝑣 = 𝑎 → ( 𝑛 ∈ ( 𝐺 NeighbVtx 𝑣 ) ↔ 𝑛 ∈ ( 𝐺 NeighbVtx 𝑎 ) ) ) |
| 55 | 52 54 | raleqbidv | ⊢ ( 𝑣 = 𝑎 → ( ∀ 𝑛 ∈ ( { 𝑎 , 𝑏 } ∖ { 𝑣 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑣 ) ↔ ∀ 𝑛 ∈ ( { 𝑎 , 𝑏 } ∖ { 𝑎 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑎 ) ) ) |
| 56 | sneq | ⊢ ( 𝑣 = 𝑏 → { 𝑣 } = { 𝑏 } ) | |
| 57 | 56 | difeq2d | ⊢ ( 𝑣 = 𝑏 → ( { 𝑎 , 𝑏 } ∖ { 𝑣 } ) = ( { 𝑎 , 𝑏 } ∖ { 𝑏 } ) ) |
| 58 | oveq2 | ⊢ ( 𝑣 = 𝑏 → ( 𝐺 NeighbVtx 𝑣 ) = ( 𝐺 NeighbVtx 𝑏 ) ) | |
| 59 | 58 | eleq2d | ⊢ ( 𝑣 = 𝑏 → ( 𝑛 ∈ ( 𝐺 NeighbVtx 𝑣 ) ↔ 𝑛 ∈ ( 𝐺 NeighbVtx 𝑏 ) ) ) |
| 60 | 57 59 | raleqbidv | ⊢ ( 𝑣 = 𝑏 → ( ∀ 𝑛 ∈ ( { 𝑎 , 𝑏 } ∖ { 𝑣 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑣 ) ↔ ∀ 𝑛 ∈ ( { 𝑎 , 𝑏 } ∖ { 𝑏 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑏 ) ) ) |
| 61 | 37 31 55 60 | ralpr | ⊢ ( ∀ 𝑣 ∈ { 𝑎 , 𝑏 } ∀ 𝑛 ∈ ( { 𝑎 , 𝑏 } ∖ { 𝑣 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑣 ) ↔ ( ∀ 𝑛 ∈ ( { 𝑎 , 𝑏 } ∖ { 𝑎 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑎 ) ∧ ∀ 𝑛 ∈ ( { 𝑎 , 𝑏 } ∖ { 𝑏 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑏 ) ) ) |
| 62 | 50 61 | bitrdi | ⊢ ( 𝑉 = { 𝑎 , 𝑏 } → ( ∀ 𝑣 ∈ 𝑉 ∀ 𝑛 ∈ ( 𝑉 ∖ { 𝑣 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑣 ) ↔ ( ∀ 𝑛 ∈ ( { 𝑎 , 𝑏 } ∖ { 𝑎 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑎 ) ∧ ∀ 𝑛 ∈ ( { 𝑎 , 𝑏 } ∖ { 𝑏 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑏 ) ) ) ) |
| 63 | 46 62 | imbi12d | ⊢ ( 𝑉 = { 𝑎 , 𝑏 } → ( ( 𝑉 ∈ 𝐸 → ∀ 𝑣 ∈ 𝑉 ∀ 𝑛 ∈ ( 𝑉 ∖ { 𝑣 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑣 ) ) ↔ ( { 𝑎 , 𝑏 } ∈ 𝐸 → ( ∀ 𝑛 ∈ ( { 𝑎 , 𝑏 } ∖ { 𝑎 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑎 ) ∧ ∀ 𝑛 ∈ ( { 𝑎 , 𝑏 } ∖ { 𝑏 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑏 ) ) ) ) ) |
| 64 | 63 | adantl | ⊢ ( ( 𝑎 ≠ 𝑏 ∧ 𝑉 = { 𝑎 , 𝑏 } ) → ( ( 𝑉 ∈ 𝐸 → ∀ 𝑣 ∈ 𝑉 ∀ 𝑛 ∈ ( 𝑉 ∖ { 𝑣 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑣 ) ) ↔ ( { 𝑎 , 𝑏 } ∈ 𝐸 → ( ∀ 𝑛 ∈ ( { 𝑎 , 𝑏 } ∖ { 𝑎 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑎 ) ∧ ∀ 𝑛 ∈ ( { 𝑎 , 𝑏 } ∖ { 𝑏 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑏 ) ) ) ) ) |
| 65 | 64 | adantl | ⊢ ( ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑉 = { 𝑎 , 𝑏 } ) ) → ( ( 𝑉 ∈ 𝐸 → ∀ 𝑣 ∈ 𝑉 ∀ 𝑛 ∈ ( 𝑉 ∖ { 𝑣 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑣 ) ) ↔ ( { 𝑎 , 𝑏 } ∈ 𝐸 → ( ∀ 𝑛 ∈ ( { 𝑎 , 𝑏 } ∖ { 𝑎 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑎 ) ∧ ∀ 𝑛 ∈ ( { 𝑎 , 𝑏 } ∖ { 𝑏 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑏 ) ) ) ) ) |
| 66 | 45 65 | mpbird | ⊢ ( ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑉 = { 𝑎 , 𝑏 } ) ) → ( 𝑉 ∈ 𝐸 → ∀ 𝑣 ∈ 𝑉 ∀ 𝑛 ∈ ( 𝑉 ∖ { 𝑣 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑣 ) ) ) |
| 67 | 66 | ex | ⊢ ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) → ( ( 𝑎 ≠ 𝑏 ∧ 𝑉 = { 𝑎 , 𝑏 } ) → ( 𝑉 ∈ 𝐸 → ∀ 𝑣 ∈ 𝑉 ∀ 𝑛 ∈ ( 𝑉 ∖ { 𝑣 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑣 ) ) ) ) |
| 68 | 67 | rexlimivv | ⊢ ( ∃ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 ( 𝑎 ≠ 𝑏 ∧ 𝑉 = { 𝑎 , 𝑏 } ) → ( 𝑉 ∈ 𝐸 → ∀ 𝑣 ∈ 𝑉 ∀ 𝑛 ∈ ( 𝑉 ∖ { 𝑣 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑣 ) ) ) |
| 69 | 5 68 | sylbi | ⊢ ( ( ♯ ‘ 𝑉 ) = 2 → ( 𝑉 ∈ 𝐸 → ∀ 𝑣 ∈ 𝑉 ∀ 𝑛 ∈ ( 𝑉 ∖ { 𝑣 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑣 ) ) ) |
| 70 | 69 | imp | ⊢ ( ( ( ♯ ‘ 𝑉 ) = 2 ∧ 𝑉 ∈ 𝐸 ) → ∀ 𝑣 ∈ 𝑉 ∀ 𝑛 ∈ ( 𝑉 ∖ { 𝑣 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑣 ) ) |