This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A set of size two is a proper unordered pair. (Contributed by AV, 1-Nov-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hash2prb | ⊢ ( 𝑉 ∈ 𝑊 → ( ( ♯ ‘ 𝑉 ) = 2 ↔ ∃ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 ( 𝑎 ≠ 𝑏 ∧ 𝑉 = { 𝑎 , 𝑏 } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hash2exprb | ⊢ ( 𝑉 ∈ 𝑊 → ( ( ♯ ‘ 𝑉 ) = 2 ↔ ∃ 𝑎 ∃ 𝑏 ( 𝑎 ≠ 𝑏 ∧ 𝑉 = { 𝑎 , 𝑏 } ) ) ) | |
| 2 | vex | ⊢ 𝑎 ∈ V | |
| 3 | 2 | prid1 | ⊢ 𝑎 ∈ { 𝑎 , 𝑏 } |
| 4 | vex | ⊢ 𝑏 ∈ V | |
| 5 | 4 | prid2 | ⊢ 𝑏 ∈ { 𝑎 , 𝑏 } |
| 6 | 3 5 | pm3.2i | ⊢ ( 𝑎 ∈ { 𝑎 , 𝑏 } ∧ 𝑏 ∈ { 𝑎 , 𝑏 } ) |
| 7 | eleq2 | ⊢ ( 𝑉 = { 𝑎 , 𝑏 } → ( 𝑎 ∈ 𝑉 ↔ 𝑎 ∈ { 𝑎 , 𝑏 } ) ) | |
| 8 | eleq2 | ⊢ ( 𝑉 = { 𝑎 , 𝑏 } → ( 𝑏 ∈ 𝑉 ↔ 𝑏 ∈ { 𝑎 , 𝑏 } ) ) | |
| 9 | 7 8 | anbi12d | ⊢ ( 𝑉 = { 𝑎 , 𝑏 } → ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ↔ ( 𝑎 ∈ { 𝑎 , 𝑏 } ∧ 𝑏 ∈ { 𝑎 , 𝑏 } ) ) ) |
| 10 | 6 9 | mpbiri | ⊢ ( 𝑉 = { 𝑎 , 𝑏 } → ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) |
| 11 | 10 | adantl | ⊢ ( ( 𝑎 ≠ 𝑏 ∧ 𝑉 = { 𝑎 , 𝑏 } ) → ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) |
| 12 | 11 | pm4.71ri | ⊢ ( ( 𝑎 ≠ 𝑏 ∧ 𝑉 = { 𝑎 , 𝑏 } ) ↔ ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑉 = { 𝑎 , 𝑏 } ) ) ) |
| 13 | 12 | 2exbii | ⊢ ( ∃ 𝑎 ∃ 𝑏 ( 𝑎 ≠ 𝑏 ∧ 𝑉 = { 𝑎 , 𝑏 } ) ↔ ∃ 𝑎 ∃ 𝑏 ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑉 = { 𝑎 , 𝑏 } ) ) ) |
| 14 | 13 | a1i | ⊢ ( 𝑉 ∈ 𝑊 → ( ∃ 𝑎 ∃ 𝑏 ( 𝑎 ≠ 𝑏 ∧ 𝑉 = { 𝑎 , 𝑏 } ) ↔ ∃ 𝑎 ∃ 𝑏 ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑉 = { 𝑎 , 𝑏 } ) ) ) ) |
| 15 | r2ex | ⊢ ( ∃ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 ( 𝑎 ≠ 𝑏 ∧ 𝑉 = { 𝑎 , 𝑏 } ) ↔ ∃ 𝑎 ∃ 𝑏 ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑉 = { 𝑎 , 𝑏 } ) ) ) | |
| 16 | 15 | bicomi | ⊢ ( ∃ 𝑎 ∃ 𝑏 ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑉 = { 𝑎 , 𝑏 } ) ) ↔ ∃ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 ( 𝑎 ≠ 𝑏 ∧ 𝑉 = { 𝑎 , 𝑏 } ) ) |
| 17 | 16 | a1i | ⊢ ( 𝑉 ∈ 𝑊 → ( ∃ 𝑎 ∃ 𝑏 ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑉 = { 𝑎 , 𝑏 } ) ) ↔ ∃ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 ( 𝑎 ≠ 𝑏 ∧ 𝑉 = { 𝑎 , 𝑏 } ) ) ) |
| 18 | 1 14 17 | 3bitrd | ⊢ ( 𝑉 ∈ 𝑊 → ( ( ♯ ‘ 𝑉 ) = 2 ↔ ∃ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 ( 𝑎 ≠ 𝑏 ∧ 𝑉 = { 𝑎 , 𝑏 } ) ) ) |