This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for nbuhgr2vtx1edgb . This reverse direction of nbgr2vtx1edg only holds for classes whose edges are subsets of the set of vertices, which is the property of hypergraphs. (Contributed by AV, 2-Nov-2020) (Proof shortened by AV, 13-Feb-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nbgr2vtx1edg.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| nbgr2vtx1edg.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | ||
| Assertion | nbuhgr2vtx1edgblem | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑉 = { 𝑎 , 𝑏 } ∧ 𝑎 ∈ ( 𝐺 NeighbVtx 𝑏 ) ) → { 𝑎 , 𝑏 } ∈ 𝐸 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nbgr2vtx1edg.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | nbgr2vtx1edg.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | |
| 3 | 1 2 | nbgrel | ⊢ ( 𝑎 ∈ ( 𝐺 NeighbVtx 𝑏 ) ↔ ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ 𝑎 ≠ 𝑏 ∧ ∃ 𝑒 ∈ 𝐸 { 𝑏 , 𝑎 } ⊆ 𝑒 ) ) |
| 4 | 2 | eleq2i | ⊢ ( 𝑒 ∈ 𝐸 ↔ 𝑒 ∈ ( Edg ‘ 𝐺 ) ) |
| 5 | edguhgr | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑒 ∈ ( Edg ‘ 𝐺 ) ) → 𝑒 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ) | |
| 6 | 4 5 | sylan2b | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑒 ∈ 𝐸 ) → 𝑒 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ) |
| 7 | 1 | eqeq1i | ⊢ ( 𝑉 = { 𝑎 , 𝑏 } ↔ ( Vtx ‘ 𝐺 ) = { 𝑎 , 𝑏 } ) |
| 8 | pweq | ⊢ ( ( Vtx ‘ 𝐺 ) = { 𝑎 , 𝑏 } → 𝒫 ( Vtx ‘ 𝐺 ) = 𝒫 { 𝑎 , 𝑏 } ) | |
| 9 | 8 | eleq2d | ⊢ ( ( Vtx ‘ 𝐺 ) = { 𝑎 , 𝑏 } → ( 𝑒 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ↔ 𝑒 ∈ 𝒫 { 𝑎 , 𝑏 } ) ) |
| 10 | velpw | ⊢ ( 𝑒 ∈ 𝒫 { 𝑎 , 𝑏 } ↔ 𝑒 ⊆ { 𝑎 , 𝑏 } ) | |
| 11 | 9 10 | bitrdi | ⊢ ( ( Vtx ‘ 𝐺 ) = { 𝑎 , 𝑏 } → ( 𝑒 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ↔ 𝑒 ⊆ { 𝑎 , 𝑏 } ) ) |
| 12 | 7 11 | sylbi | ⊢ ( 𝑉 = { 𝑎 , 𝑏 } → ( 𝑒 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ↔ 𝑒 ⊆ { 𝑎 , 𝑏 } ) ) |
| 13 | 12 | adantl | ⊢ ( ( ( 𝐺 ∈ UHGraph ∧ 𝑒 ∈ 𝐸 ) ∧ 𝑉 = { 𝑎 , 𝑏 } ) → ( 𝑒 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ↔ 𝑒 ⊆ { 𝑎 , 𝑏 } ) ) |
| 14 | prcom | ⊢ { 𝑏 , 𝑎 } = { 𝑎 , 𝑏 } | |
| 15 | 14 | sseq1i | ⊢ ( { 𝑏 , 𝑎 } ⊆ 𝑒 ↔ { 𝑎 , 𝑏 } ⊆ 𝑒 ) |
| 16 | eqss | ⊢ ( { 𝑎 , 𝑏 } = 𝑒 ↔ ( { 𝑎 , 𝑏 } ⊆ 𝑒 ∧ 𝑒 ⊆ { 𝑎 , 𝑏 } ) ) | |
| 17 | eleq1a | ⊢ ( 𝑒 ∈ 𝐸 → ( { 𝑎 , 𝑏 } = 𝑒 → { 𝑎 , 𝑏 } ∈ 𝐸 ) ) | |
| 18 | 17 | a1i | ⊢ ( ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ 𝑎 ≠ 𝑏 ) → ( 𝑒 ∈ 𝐸 → ( { 𝑎 , 𝑏 } = 𝑒 → { 𝑎 , 𝑏 } ∈ 𝐸 ) ) ) |
| 19 | 18 | com13 | ⊢ ( { 𝑎 , 𝑏 } = 𝑒 → ( 𝑒 ∈ 𝐸 → ( ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ 𝑎 ≠ 𝑏 ) → { 𝑎 , 𝑏 } ∈ 𝐸 ) ) ) |
| 20 | 16 19 | sylbir | ⊢ ( ( { 𝑎 , 𝑏 } ⊆ 𝑒 ∧ 𝑒 ⊆ { 𝑎 , 𝑏 } ) → ( 𝑒 ∈ 𝐸 → ( ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ 𝑎 ≠ 𝑏 ) → { 𝑎 , 𝑏 } ∈ 𝐸 ) ) ) |
| 21 | 20 | ex | ⊢ ( { 𝑎 , 𝑏 } ⊆ 𝑒 → ( 𝑒 ⊆ { 𝑎 , 𝑏 } → ( 𝑒 ∈ 𝐸 → ( ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ 𝑎 ≠ 𝑏 ) → { 𝑎 , 𝑏 } ∈ 𝐸 ) ) ) ) |
| 22 | 15 21 | sylbi | ⊢ ( { 𝑏 , 𝑎 } ⊆ 𝑒 → ( 𝑒 ⊆ { 𝑎 , 𝑏 } → ( 𝑒 ∈ 𝐸 → ( ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ 𝑎 ≠ 𝑏 ) → { 𝑎 , 𝑏 } ∈ 𝐸 ) ) ) ) |
| 23 | 22 | com13 | ⊢ ( 𝑒 ∈ 𝐸 → ( 𝑒 ⊆ { 𝑎 , 𝑏 } → ( { 𝑏 , 𝑎 } ⊆ 𝑒 → ( ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ 𝑎 ≠ 𝑏 ) → { 𝑎 , 𝑏 } ∈ 𝐸 ) ) ) ) |
| 24 | 23 | ad2antlr | ⊢ ( ( ( 𝐺 ∈ UHGraph ∧ 𝑒 ∈ 𝐸 ) ∧ 𝑉 = { 𝑎 , 𝑏 } ) → ( 𝑒 ⊆ { 𝑎 , 𝑏 } → ( { 𝑏 , 𝑎 } ⊆ 𝑒 → ( ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ 𝑎 ≠ 𝑏 ) → { 𝑎 , 𝑏 } ∈ 𝐸 ) ) ) ) |
| 25 | 13 24 | sylbid | ⊢ ( ( ( 𝐺 ∈ UHGraph ∧ 𝑒 ∈ 𝐸 ) ∧ 𝑉 = { 𝑎 , 𝑏 } ) → ( 𝑒 ∈ 𝒫 ( Vtx ‘ 𝐺 ) → ( { 𝑏 , 𝑎 } ⊆ 𝑒 → ( ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ 𝑎 ≠ 𝑏 ) → { 𝑎 , 𝑏 } ∈ 𝐸 ) ) ) ) |
| 26 | 25 | ex | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑒 ∈ 𝐸 ) → ( 𝑉 = { 𝑎 , 𝑏 } → ( 𝑒 ∈ 𝒫 ( Vtx ‘ 𝐺 ) → ( { 𝑏 , 𝑎 } ⊆ 𝑒 → ( ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ 𝑎 ≠ 𝑏 ) → { 𝑎 , 𝑏 } ∈ 𝐸 ) ) ) ) ) |
| 27 | 6 26 | mpid | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑒 ∈ 𝐸 ) → ( 𝑉 = { 𝑎 , 𝑏 } → ( { 𝑏 , 𝑎 } ⊆ 𝑒 → ( ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ 𝑎 ≠ 𝑏 ) → { 𝑎 , 𝑏 } ∈ 𝐸 ) ) ) ) |
| 28 | 27 | impancom | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑉 = { 𝑎 , 𝑏 } ) → ( 𝑒 ∈ 𝐸 → ( { 𝑏 , 𝑎 } ⊆ 𝑒 → ( ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ 𝑎 ≠ 𝑏 ) → { 𝑎 , 𝑏 } ∈ 𝐸 ) ) ) ) |
| 29 | 28 | com14 | ⊢ ( ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ 𝑎 ≠ 𝑏 ) → ( 𝑒 ∈ 𝐸 → ( { 𝑏 , 𝑎 } ⊆ 𝑒 → ( ( 𝐺 ∈ UHGraph ∧ 𝑉 = { 𝑎 , 𝑏 } ) → { 𝑎 , 𝑏 } ∈ 𝐸 ) ) ) ) |
| 30 | 29 | rexlimdv | ⊢ ( ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ 𝑎 ≠ 𝑏 ) → ( ∃ 𝑒 ∈ 𝐸 { 𝑏 , 𝑎 } ⊆ 𝑒 → ( ( 𝐺 ∈ UHGraph ∧ 𝑉 = { 𝑎 , 𝑏 } ) → { 𝑎 , 𝑏 } ∈ 𝐸 ) ) ) |
| 31 | 30 | 3impia | ⊢ ( ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ 𝑎 ≠ 𝑏 ∧ ∃ 𝑒 ∈ 𝐸 { 𝑏 , 𝑎 } ⊆ 𝑒 ) → ( ( 𝐺 ∈ UHGraph ∧ 𝑉 = { 𝑎 , 𝑏 } ) → { 𝑎 , 𝑏 } ∈ 𝐸 ) ) |
| 32 | 31 | com12 | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑉 = { 𝑎 , 𝑏 } ) → ( ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ 𝑎 ≠ 𝑏 ∧ ∃ 𝑒 ∈ 𝐸 { 𝑏 , 𝑎 } ⊆ 𝑒 ) → { 𝑎 , 𝑏 } ∈ 𝐸 ) ) |
| 33 | 3 32 | biimtrid | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑉 = { 𝑎 , 𝑏 } ) → ( 𝑎 ∈ ( 𝐺 NeighbVtx 𝑏 ) → { 𝑎 , 𝑏 } ∈ 𝐸 ) ) |
| 34 | 33 | 3impia | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑉 = { 𝑎 , 𝑏 } ∧ 𝑎 ∈ ( 𝐺 NeighbVtx 𝑏 ) ) → { 𝑎 , 𝑏 } ∈ 𝐸 ) |