This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Removal of a singleton from an unordered pair. (Contributed by Thierry Arnoux, 4-Feb-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | difprsn1 | ⊢ ( 𝐴 ≠ 𝐵 → ( { 𝐴 , 𝐵 } ∖ { 𝐴 } ) = { 𝐵 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | necom | ⊢ ( 𝐵 ≠ 𝐴 ↔ 𝐴 ≠ 𝐵 ) | |
| 2 | df-pr | ⊢ { 𝐴 , 𝐵 } = ( { 𝐴 } ∪ { 𝐵 } ) | |
| 3 | 2 | equncomi | ⊢ { 𝐴 , 𝐵 } = ( { 𝐵 } ∪ { 𝐴 } ) |
| 4 | 3 | difeq1i | ⊢ ( { 𝐴 , 𝐵 } ∖ { 𝐴 } ) = ( ( { 𝐵 } ∪ { 𝐴 } ) ∖ { 𝐴 } ) |
| 5 | difun2 | ⊢ ( ( { 𝐵 } ∪ { 𝐴 } ) ∖ { 𝐴 } ) = ( { 𝐵 } ∖ { 𝐴 } ) | |
| 6 | 4 5 | eqtri | ⊢ ( { 𝐴 , 𝐵 } ∖ { 𝐴 } ) = ( { 𝐵 } ∖ { 𝐴 } ) |
| 7 | disjsn2 | ⊢ ( 𝐵 ≠ 𝐴 → ( { 𝐵 } ∩ { 𝐴 } ) = ∅ ) | |
| 8 | disj3 | ⊢ ( ( { 𝐵 } ∩ { 𝐴 } ) = ∅ ↔ { 𝐵 } = ( { 𝐵 } ∖ { 𝐴 } ) ) | |
| 9 | 7 8 | sylib | ⊢ ( 𝐵 ≠ 𝐴 → { 𝐵 } = ( { 𝐵 } ∖ { 𝐴 } ) ) |
| 10 | 6 9 | eqtr4id | ⊢ ( 𝐵 ≠ 𝐴 → ( { 𝐴 , 𝐵 } ∖ { 𝐴 } ) = { 𝐵 } ) |
| 11 | 1 10 | sylbir | ⊢ ( 𝐴 ≠ 𝐵 → ( { 𝐴 , 𝐵 } ∖ { 𝐴 } ) = { 𝐵 } ) |