This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Characterization of a neighbor N of a vertex X in a graph G . (Contributed by Alexander van der Vekens and Mario Carneiro, 9-Oct-2017) (Revised by AV, 26-Oct-2020) (Revised by AV, 12-Feb-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nbgrel.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| nbgrel.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | ||
| Assertion | nbgrel | ⊢ ( 𝑁 ∈ ( 𝐺 NeighbVtx 𝑋 ) ↔ ( ( 𝑁 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑁 ≠ 𝑋 ∧ ∃ 𝑒 ∈ 𝐸 { 𝑋 , 𝑁 } ⊆ 𝑒 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nbgrel.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | nbgrel.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | |
| 3 | 1 | nbgrcl | ⊢ ( 𝑁 ∈ ( 𝐺 NeighbVtx 𝑋 ) → 𝑋 ∈ 𝑉 ) |
| 4 | 3 | pm4.71ri | ⊢ ( 𝑁 ∈ ( 𝐺 NeighbVtx 𝑋 ) ↔ ( 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ( 𝐺 NeighbVtx 𝑋 ) ) ) |
| 5 | 1 2 | nbgrval | ⊢ ( 𝑋 ∈ 𝑉 → ( 𝐺 NeighbVtx 𝑋 ) = { 𝑛 ∈ ( 𝑉 ∖ { 𝑋 } ) ∣ ∃ 𝑒 ∈ 𝐸 { 𝑋 , 𝑛 } ⊆ 𝑒 } ) |
| 6 | 5 | eleq2d | ⊢ ( 𝑋 ∈ 𝑉 → ( 𝑁 ∈ ( 𝐺 NeighbVtx 𝑋 ) ↔ 𝑁 ∈ { 𝑛 ∈ ( 𝑉 ∖ { 𝑋 } ) ∣ ∃ 𝑒 ∈ 𝐸 { 𝑋 , 𝑛 } ⊆ 𝑒 } ) ) |
| 7 | preq2 | ⊢ ( 𝑛 = 𝑁 → { 𝑋 , 𝑛 } = { 𝑋 , 𝑁 } ) | |
| 8 | 7 | sseq1d | ⊢ ( 𝑛 = 𝑁 → ( { 𝑋 , 𝑛 } ⊆ 𝑒 ↔ { 𝑋 , 𝑁 } ⊆ 𝑒 ) ) |
| 9 | 8 | rexbidv | ⊢ ( 𝑛 = 𝑁 → ( ∃ 𝑒 ∈ 𝐸 { 𝑋 , 𝑛 } ⊆ 𝑒 ↔ ∃ 𝑒 ∈ 𝐸 { 𝑋 , 𝑁 } ⊆ 𝑒 ) ) |
| 10 | 9 | elrab | ⊢ ( 𝑁 ∈ { 𝑛 ∈ ( 𝑉 ∖ { 𝑋 } ) ∣ ∃ 𝑒 ∈ 𝐸 { 𝑋 , 𝑛 } ⊆ 𝑒 } ↔ ( 𝑁 ∈ ( 𝑉 ∖ { 𝑋 } ) ∧ ∃ 𝑒 ∈ 𝐸 { 𝑋 , 𝑁 } ⊆ 𝑒 ) ) |
| 11 | eldifsn | ⊢ ( 𝑁 ∈ ( 𝑉 ∖ { 𝑋 } ) ↔ ( 𝑁 ∈ 𝑉 ∧ 𝑁 ≠ 𝑋 ) ) | |
| 12 | 11 | anbi1i | ⊢ ( ( 𝑁 ∈ ( 𝑉 ∖ { 𝑋 } ) ∧ ∃ 𝑒 ∈ 𝐸 { 𝑋 , 𝑁 } ⊆ 𝑒 ) ↔ ( ( 𝑁 ∈ 𝑉 ∧ 𝑁 ≠ 𝑋 ) ∧ ∃ 𝑒 ∈ 𝐸 { 𝑋 , 𝑁 } ⊆ 𝑒 ) ) |
| 13 | 10 12 | bitri | ⊢ ( 𝑁 ∈ { 𝑛 ∈ ( 𝑉 ∖ { 𝑋 } ) ∣ ∃ 𝑒 ∈ 𝐸 { 𝑋 , 𝑛 } ⊆ 𝑒 } ↔ ( ( 𝑁 ∈ 𝑉 ∧ 𝑁 ≠ 𝑋 ) ∧ ∃ 𝑒 ∈ 𝐸 { 𝑋 , 𝑁 } ⊆ 𝑒 ) ) |
| 14 | 6 13 | bitrdi | ⊢ ( 𝑋 ∈ 𝑉 → ( 𝑁 ∈ ( 𝐺 NeighbVtx 𝑋 ) ↔ ( ( 𝑁 ∈ 𝑉 ∧ 𝑁 ≠ 𝑋 ) ∧ ∃ 𝑒 ∈ 𝐸 { 𝑋 , 𝑁 } ⊆ 𝑒 ) ) ) |
| 15 | 14 | pm5.32i | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ( 𝐺 NeighbVtx 𝑋 ) ) ↔ ( 𝑋 ∈ 𝑉 ∧ ( ( 𝑁 ∈ 𝑉 ∧ 𝑁 ≠ 𝑋 ) ∧ ∃ 𝑒 ∈ 𝐸 { 𝑋 , 𝑁 } ⊆ 𝑒 ) ) ) |
| 16 | df-3an | ⊢ ( ( ( 𝑁 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑁 ≠ 𝑋 ∧ ∃ 𝑒 ∈ 𝐸 { 𝑋 , 𝑁 } ⊆ 𝑒 ) ↔ ( ( ( 𝑁 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑁 ≠ 𝑋 ) ∧ ∃ 𝑒 ∈ 𝐸 { 𝑋 , 𝑁 } ⊆ 𝑒 ) ) | |
| 17 | anass | ⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉 ) ∧ 𝑁 ≠ 𝑋 ) ↔ ( 𝑋 ∈ 𝑉 ∧ ( 𝑁 ∈ 𝑉 ∧ 𝑁 ≠ 𝑋 ) ) ) | |
| 18 | ancom | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉 ) ↔ ( 𝑁 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) ) | |
| 19 | 18 | anbi1i | ⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉 ) ∧ 𝑁 ≠ 𝑋 ) ↔ ( ( 𝑁 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑁 ≠ 𝑋 ) ) |
| 20 | 17 19 | bitr3i | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ ( 𝑁 ∈ 𝑉 ∧ 𝑁 ≠ 𝑋 ) ) ↔ ( ( 𝑁 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑁 ≠ 𝑋 ) ) |
| 21 | 20 | anbi1i | ⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ ( 𝑁 ∈ 𝑉 ∧ 𝑁 ≠ 𝑋 ) ) ∧ ∃ 𝑒 ∈ 𝐸 { 𝑋 , 𝑁 } ⊆ 𝑒 ) ↔ ( ( ( 𝑁 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑁 ≠ 𝑋 ) ∧ ∃ 𝑒 ∈ 𝐸 { 𝑋 , 𝑁 } ⊆ 𝑒 ) ) |
| 22 | anass | ⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ ( 𝑁 ∈ 𝑉 ∧ 𝑁 ≠ 𝑋 ) ) ∧ ∃ 𝑒 ∈ 𝐸 { 𝑋 , 𝑁 } ⊆ 𝑒 ) ↔ ( 𝑋 ∈ 𝑉 ∧ ( ( 𝑁 ∈ 𝑉 ∧ 𝑁 ≠ 𝑋 ) ∧ ∃ 𝑒 ∈ 𝐸 { 𝑋 , 𝑁 } ⊆ 𝑒 ) ) ) | |
| 23 | 16 21 22 | 3bitr2ri | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ ( ( 𝑁 ∈ 𝑉 ∧ 𝑁 ≠ 𝑋 ) ∧ ∃ 𝑒 ∈ 𝐸 { 𝑋 , 𝑁 } ⊆ 𝑒 ) ) ↔ ( ( 𝑁 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑁 ≠ 𝑋 ∧ ∃ 𝑒 ∈ 𝐸 { 𝑋 , 𝑁 } ⊆ 𝑒 ) ) |
| 24 | 15 23 | bitri | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ( 𝐺 NeighbVtx 𝑋 ) ) ↔ ( ( 𝑁 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑁 ≠ 𝑋 ∧ ∃ 𝑒 ∈ 𝐸 { 𝑋 , 𝑁 } ⊆ 𝑒 ) ) |
| 25 | 4 24 | bitri | ⊢ ( 𝑁 ∈ ( 𝐺 NeighbVtx 𝑋 ) ↔ ( ( 𝑁 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑁 ≠ 𝑋 ∧ ∃ 𝑒 ∈ 𝐸 { 𝑋 , 𝑁 } ⊆ 𝑒 ) ) |