This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A natural transformation is natural between opposite functors. (Contributed by Zhi Wang, 18-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | natoppf.o | ⊢ 𝑂 = ( oppCat ‘ 𝐶 ) | |
| natoppf.p | ⊢ 𝑃 = ( oppCat ‘ 𝐷 ) | ||
| natoppf.n | ⊢ 𝑁 = ( 𝐶 Nat 𝐷 ) | ||
| natoppf.m | ⊢ 𝑀 = ( 𝑂 Nat 𝑃 ) | ||
| natoppf.a | ⊢ ( 𝜑 → 𝐴 ∈ ( 〈 𝐹 , 𝐺 〉 𝑁 〈 𝐾 , 𝐿 〉 ) ) | ||
| Assertion | natoppf | ⊢ ( 𝜑 → 𝐴 ∈ ( 〈 𝐾 , tpos 𝐿 〉 𝑀 〈 𝐹 , tpos 𝐺 〉 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | natoppf.o | ⊢ 𝑂 = ( oppCat ‘ 𝐶 ) | |
| 2 | natoppf.p | ⊢ 𝑃 = ( oppCat ‘ 𝐷 ) | |
| 3 | natoppf.n | ⊢ 𝑁 = ( 𝐶 Nat 𝐷 ) | |
| 4 | natoppf.m | ⊢ 𝑀 = ( 𝑂 Nat 𝑃 ) | |
| 5 | natoppf.a | ⊢ ( 𝜑 → 𝐴 ∈ ( 〈 𝐹 , 𝐺 〉 𝑁 〈 𝐾 , 𝐿 〉 ) ) | |
| 6 | eqid | ⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) | |
| 7 | 1 6 | oppcbas | ⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝑂 ) |
| 8 | eqid | ⊢ ( Hom ‘ 𝑂 ) = ( Hom ‘ 𝑂 ) | |
| 9 | eqid | ⊢ ( Hom ‘ 𝑃 ) = ( Hom ‘ 𝑃 ) | |
| 10 | eqid | ⊢ ( comp ‘ 𝑃 ) = ( comp ‘ 𝑃 ) | |
| 11 | 3 5 | natrcl3 | ⊢ ( 𝜑 → 𝐾 ( 𝐶 Func 𝐷 ) 𝐿 ) |
| 12 | 1 2 11 | funcoppc | ⊢ ( 𝜑 → 𝐾 ( 𝑂 Func 𝑃 ) tpos 𝐿 ) |
| 13 | 3 5 | natrcl2 | ⊢ ( 𝜑 → 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) |
| 14 | 1 2 13 | funcoppc | ⊢ ( 𝜑 → 𝐹 ( 𝑂 Func 𝑃 ) tpos 𝐺 ) |
| 15 | 3 5 6 | natfn | ⊢ ( 𝜑 → 𝐴 Fn ( Base ‘ 𝐶 ) ) |
| 16 | 5 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → 𝐴 ∈ ( 〈 𝐹 , 𝐺 〉 𝑁 〈 𝐾 , 𝐿 〉 ) ) |
| 17 | eqid | ⊢ ( Hom ‘ 𝐷 ) = ( Hom ‘ 𝐷 ) | |
| 18 | simpr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → 𝑥 ∈ ( Base ‘ 𝐶 ) ) | |
| 19 | 3 16 6 17 18 | natcl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( 𝐴 ‘ 𝑥 ) ∈ ( ( 𝐹 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝐾 ‘ 𝑥 ) ) ) |
| 20 | 17 2 | oppchom | ⊢ ( ( 𝐾 ‘ 𝑥 ) ( Hom ‘ 𝑃 ) ( 𝐹 ‘ 𝑥 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝐾 ‘ 𝑥 ) ) |
| 21 | 19 20 | eleqtrrdi | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( 𝐴 ‘ 𝑥 ) ∈ ( ( 𝐾 ‘ 𝑥 ) ( Hom ‘ 𝑃 ) ( 𝐹 ‘ 𝑥 ) ) ) |
| 22 | 5 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ) → 𝐴 ∈ ( 〈 𝐹 , 𝐺 〉 𝑁 〈 𝐾 , 𝐿 〉 ) ) |
| 23 | eqid | ⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) | |
| 24 | eqid | ⊢ ( comp ‘ 𝐷 ) = ( comp ‘ 𝐷 ) | |
| 25 | simplrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ) → 𝑦 ∈ ( Base ‘ 𝐶 ) ) | |
| 26 | simplrl | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ) → 𝑥 ∈ ( Base ‘ 𝐶 ) ) | |
| 27 | simpr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ) → 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ) | |
| 28 | 23 1 | oppchom | ⊢ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) = ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) |
| 29 | 27 28 | eleqtrdi | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ) → 𝑚 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ) |
| 30 | 3 22 6 23 24 25 26 29 | nati | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ) → ( ( 𝐴 ‘ 𝑥 ) ( 〈 ( 𝐹 ‘ 𝑦 ) , ( 𝐹 ‘ 𝑥 ) 〉 ( comp ‘ 𝐷 ) ( 𝐾 ‘ 𝑥 ) ) ( ( 𝑦 𝐺 𝑥 ) ‘ 𝑚 ) ) = ( ( ( 𝑦 𝐿 𝑥 ) ‘ 𝑚 ) ( 〈 ( 𝐹 ‘ 𝑦 ) , ( 𝐾 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝐾 ‘ 𝑥 ) ) ( 𝐴 ‘ 𝑦 ) ) ) |
| 31 | eqid | ⊢ ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 ) | |
| 32 | 6 31 11 | funcf1 | ⊢ ( 𝜑 → 𝐾 : ( Base ‘ 𝐶 ) ⟶ ( Base ‘ 𝐷 ) ) |
| 33 | 32 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ) → 𝐾 : ( Base ‘ 𝐶 ) ⟶ ( Base ‘ 𝐷 ) ) |
| 34 | 33 26 | ffvelcdmd | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ) → ( 𝐾 ‘ 𝑥 ) ∈ ( Base ‘ 𝐷 ) ) |
| 35 | 6 31 13 | funcf1 | ⊢ ( 𝜑 → 𝐹 : ( Base ‘ 𝐶 ) ⟶ ( Base ‘ 𝐷 ) ) |
| 36 | 35 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ) → 𝐹 : ( Base ‘ 𝐶 ) ⟶ ( Base ‘ 𝐷 ) ) |
| 37 | 36 26 | ffvelcdmd | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ( Base ‘ 𝐷 ) ) |
| 38 | 36 25 | ffvelcdmd | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ) → ( 𝐹 ‘ 𝑦 ) ∈ ( Base ‘ 𝐷 ) ) |
| 39 | 31 24 2 34 37 38 | oppcco | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ) → ( ( ( 𝑦 𝐺 𝑥 ) ‘ 𝑚 ) ( 〈 ( 𝐾 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) 〉 ( comp ‘ 𝑃 ) ( 𝐹 ‘ 𝑦 ) ) ( 𝐴 ‘ 𝑥 ) ) = ( ( 𝐴 ‘ 𝑥 ) ( 〈 ( 𝐹 ‘ 𝑦 ) , ( 𝐹 ‘ 𝑥 ) 〉 ( comp ‘ 𝐷 ) ( 𝐾 ‘ 𝑥 ) ) ( ( 𝑦 𝐺 𝑥 ) ‘ 𝑚 ) ) ) |
| 40 | 33 25 | ffvelcdmd | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ) → ( 𝐾 ‘ 𝑦 ) ∈ ( Base ‘ 𝐷 ) ) |
| 41 | 31 24 2 34 40 38 | oppcco | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ) → ( ( 𝐴 ‘ 𝑦 ) ( 〈 ( 𝐾 ‘ 𝑥 ) , ( 𝐾 ‘ 𝑦 ) 〉 ( comp ‘ 𝑃 ) ( 𝐹 ‘ 𝑦 ) ) ( ( 𝑦 𝐿 𝑥 ) ‘ 𝑚 ) ) = ( ( ( 𝑦 𝐿 𝑥 ) ‘ 𝑚 ) ( 〈 ( 𝐹 ‘ 𝑦 ) , ( 𝐾 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝐾 ‘ 𝑥 ) ) ( 𝐴 ‘ 𝑦 ) ) ) |
| 42 | 30 39 41 | 3eqtr4rd | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ) → ( ( 𝐴 ‘ 𝑦 ) ( 〈 ( 𝐾 ‘ 𝑥 ) , ( 𝐾 ‘ 𝑦 ) 〉 ( comp ‘ 𝑃 ) ( 𝐹 ‘ 𝑦 ) ) ( ( 𝑦 𝐿 𝑥 ) ‘ 𝑚 ) ) = ( ( ( 𝑦 𝐺 𝑥 ) ‘ 𝑚 ) ( 〈 ( 𝐾 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) 〉 ( comp ‘ 𝑃 ) ( 𝐹 ‘ 𝑦 ) ) ( 𝐴 ‘ 𝑥 ) ) ) |
| 43 | ovtpos | ⊢ ( 𝑥 tpos 𝐿 𝑦 ) = ( 𝑦 𝐿 𝑥 ) | |
| 44 | 43 | fveq1i | ⊢ ( ( 𝑥 tpos 𝐿 𝑦 ) ‘ 𝑚 ) = ( ( 𝑦 𝐿 𝑥 ) ‘ 𝑚 ) |
| 45 | 44 | oveq2i | ⊢ ( ( 𝐴 ‘ 𝑦 ) ( 〈 ( 𝐾 ‘ 𝑥 ) , ( 𝐾 ‘ 𝑦 ) 〉 ( comp ‘ 𝑃 ) ( 𝐹 ‘ 𝑦 ) ) ( ( 𝑥 tpos 𝐿 𝑦 ) ‘ 𝑚 ) ) = ( ( 𝐴 ‘ 𝑦 ) ( 〈 ( 𝐾 ‘ 𝑥 ) , ( 𝐾 ‘ 𝑦 ) 〉 ( comp ‘ 𝑃 ) ( 𝐹 ‘ 𝑦 ) ) ( ( 𝑦 𝐿 𝑥 ) ‘ 𝑚 ) ) |
| 46 | ovtpos | ⊢ ( 𝑥 tpos 𝐺 𝑦 ) = ( 𝑦 𝐺 𝑥 ) | |
| 47 | 46 | fveq1i | ⊢ ( ( 𝑥 tpos 𝐺 𝑦 ) ‘ 𝑚 ) = ( ( 𝑦 𝐺 𝑥 ) ‘ 𝑚 ) |
| 48 | 47 | oveq1i | ⊢ ( ( ( 𝑥 tpos 𝐺 𝑦 ) ‘ 𝑚 ) ( 〈 ( 𝐾 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) 〉 ( comp ‘ 𝑃 ) ( 𝐹 ‘ 𝑦 ) ) ( 𝐴 ‘ 𝑥 ) ) = ( ( ( 𝑦 𝐺 𝑥 ) ‘ 𝑚 ) ( 〈 ( 𝐾 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) 〉 ( comp ‘ 𝑃 ) ( 𝐹 ‘ 𝑦 ) ) ( 𝐴 ‘ 𝑥 ) ) |
| 49 | 42 45 48 | 3eqtr4g | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ) → ( ( 𝐴 ‘ 𝑦 ) ( 〈 ( 𝐾 ‘ 𝑥 ) , ( 𝐾 ‘ 𝑦 ) 〉 ( comp ‘ 𝑃 ) ( 𝐹 ‘ 𝑦 ) ) ( ( 𝑥 tpos 𝐿 𝑦 ) ‘ 𝑚 ) ) = ( ( ( 𝑥 tpos 𝐺 𝑦 ) ‘ 𝑚 ) ( 〈 ( 𝐾 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑥 ) 〉 ( comp ‘ 𝑃 ) ( 𝐹 ‘ 𝑦 ) ) ( 𝐴 ‘ 𝑥 ) ) ) |
| 50 | 4 7 8 9 10 12 14 15 21 49 | isnatd | ⊢ ( 𝜑 → 𝐴 ∈ ( 〈 𝐾 , tpos 𝐿 〉 𝑀 〈 𝐹 , tpos 𝐺 〉 ) ) |