This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Property of being a natural transformation; deduction form. (Contributed by Zhi Wang, 29-Sep-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isnatd.1 | ⊢ 𝑁 = ( 𝐶 Nat 𝐷 ) | |
| isnatd.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | ||
| isnatd.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | ||
| isnatd.j | ⊢ 𝐽 = ( Hom ‘ 𝐷 ) | ||
| isnatd.o | ⊢ · = ( comp ‘ 𝐷 ) | ||
| isnatd.f | ⊢ ( 𝜑 → 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) | ||
| isnatd.g | ⊢ ( 𝜑 → 𝐾 ( 𝐶 Func 𝐷 ) 𝐿 ) | ||
| isnatd.a | ⊢ ( 𝜑 → 𝐴 Fn 𝐵 ) | ||
| isnatd.2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 𝐴 ‘ 𝑥 ) ∈ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐾 ‘ 𝑥 ) ) ) | ||
| isnatd.3 | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ℎ ∈ ( 𝑥 𝐻 𝑦 ) ) → ( ( 𝐴 ‘ 𝑦 ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 · ( 𝐾 ‘ 𝑦 ) ) ( ( 𝑥 𝐺 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 𝐿 𝑦 ) ‘ ℎ ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐾 ‘ 𝑥 ) 〉 · ( 𝐾 ‘ 𝑦 ) ) ( 𝐴 ‘ 𝑥 ) ) ) | ||
| Assertion | isnatd | ⊢ ( 𝜑 → 𝐴 ∈ ( 〈 𝐹 , 𝐺 〉 𝑁 〈 𝐾 , 𝐿 〉 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isnatd.1 | ⊢ 𝑁 = ( 𝐶 Nat 𝐷 ) | |
| 2 | isnatd.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| 3 | isnatd.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | |
| 4 | isnatd.j | ⊢ 𝐽 = ( Hom ‘ 𝐷 ) | |
| 5 | isnatd.o | ⊢ · = ( comp ‘ 𝐷 ) | |
| 6 | isnatd.f | ⊢ ( 𝜑 → 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) | |
| 7 | isnatd.g | ⊢ ( 𝜑 → 𝐾 ( 𝐶 Func 𝐷 ) 𝐿 ) | |
| 8 | isnatd.a | ⊢ ( 𝜑 → 𝐴 Fn 𝐵 ) | |
| 9 | isnatd.2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 𝐴 ‘ 𝑥 ) ∈ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐾 ‘ 𝑥 ) ) ) | |
| 10 | isnatd.3 | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ℎ ∈ ( 𝑥 𝐻 𝑦 ) ) → ( ( 𝐴 ‘ 𝑦 ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 · ( 𝐾 ‘ 𝑦 ) ) ( ( 𝑥 𝐺 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 𝐿 𝑦 ) ‘ ℎ ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐾 ‘ 𝑥 ) 〉 · ( 𝐾 ‘ 𝑦 ) ) ( 𝐴 ‘ 𝑥 ) ) ) | |
| 11 | dffn5 | ⊢ ( 𝐴 Fn 𝐵 ↔ 𝐴 = ( 𝑥 ∈ 𝐵 ↦ ( 𝐴 ‘ 𝑥 ) ) ) | |
| 12 | 8 11 | sylib | ⊢ ( 𝜑 → 𝐴 = ( 𝑥 ∈ 𝐵 ↦ ( 𝐴 ‘ 𝑥 ) ) ) |
| 13 | 2 | fvexi | ⊢ 𝐵 ∈ V |
| 14 | 13 | mptex | ⊢ ( 𝑥 ∈ 𝐵 ↦ ( 𝐴 ‘ 𝑥 ) ) ∈ V |
| 15 | 12 14 | eqeltrdi | ⊢ ( 𝜑 → 𝐴 ∈ V ) |
| 16 | 9 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ( 𝐴 ‘ 𝑥 ) ∈ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐾 ‘ 𝑥 ) ) ) |
| 17 | elixp2 | ⊢ ( 𝐴 ∈ X 𝑥 ∈ 𝐵 ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐾 ‘ 𝑥 ) ) ↔ ( 𝐴 ∈ V ∧ 𝐴 Fn 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 ( 𝐴 ‘ 𝑥 ) ∈ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐾 ‘ 𝑥 ) ) ) ) | |
| 18 | 15 8 16 17 | syl3anbrc | ⊢ ( 𝜑 → 𝐴 ∈ X 𝑥 ∈ 𝐵 ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐾 ‘ 𝑥 ) ) ) |
| 19 | 10 | ralrimiva | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ∀ ℎ ∈ ( 𝑥 𝐻 𝑦 ) ( ( 𝐴 ‘ 𝑦 ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 · ( 𝐾 ‘ 𝑦 ) ) ( ( 𝑥 𝐺 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 𝐿 𝑦 ) ‘ ℎ ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐾 ‘ 𝑥 ) 〉 · ( 𝐾 ‘ 𝑦 ) ) ( 𝐴 ‘ 𝑥 ) ) ) |
| 20 | 19 | ralrimivva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ ℎ ∈ ( 𝑥 𝐻 𝑦 ) ( ( 𝐴 ‘ 𝑦 ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 · ( 𝐾 ‘ 𝑦 ) ) ( ( 𝑥 𝐺 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 𝐿 𝑦 ) ‘ ℎ ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐾 ‘ 𝑥 ) 〉 · ( 𝐾 ‘ 𝑦 ) ) ( 𝐴 ‘ 𝑥 ) ) ) |
| 21 | 1 2 3 4 5 6 7 | isnat | ⊢ ( 𝜑 → ( 𝐴 ∈ ( 〈 𝐹 , 𝐺 〉 𝑁 〈 𝐾 , 𝐿 〉 ) ↔ ( 𝐴 ∈ X 𝑥 ∈ 𝐵 ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐾 ‘ 𝑥 ) ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ ℎ ∈ ( 𝑥 𝐻 𝑦 ) ( ( 𝐴 ‘ 𝑦 ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 · ( 𝐾 ‘ 𝑦 ) ) ( ( 𝑥 𝐺 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 𝐿 𝑦 ) ‘ ℎ ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐾 ‘ 𝑥 ) 〉 · ( 𝐾 ‘ 𝑦 ) ) ( 𝐴 ‘ 𝑥 ) ) ) ) ) |
| 22 | 18 20 21 | mpbir2and | ⊢ ( 𝜑 → 𝐴 ∈ ( 〈 𝐹 , 𝐺 〉 𝑁 〈 𝐾 , 𝐿 〉 ) ) |