This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A natural transformation is natural between opposite functors. (Contributed by Zhi Wang, 18-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | natoppf.o | ⊢ 𝑂 = ( oppCat ‘ 𝐶 ) | |
| natoppf.p | ⊢ 𝑃 = ( oppCat ‘ 𝐷 ) | ||
| natoppf.n | ⊢ 𝑁 = ( 𝐶 Nat 𝐷 ) | ||
| natoppf.m | ⊢ 𝑀 = ( 𝑂 Nat 𝑃 ) | ||
| natoppfb.k | ⊢ ( 𝜑 → 𝐾 = ( oppFunc ‘ 𝐹 ) ) | ||
| natoppfb.l | ⊢ ( 𝜑 → 𝐿 = ( oppFunc ‘ 𝐺 ) ) | ||
| natoppf2.a | ⊢ ( 𝜑 → 𝐴 ∈ ( 𝐹 𝑁 𝐺 ) ) | ||
| Assertion | natoppf2 | ⊢ ( 𝜑 → 𝐴 ∈ ( 𝐿 𝑀 𝐾 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | natoppf.o | ⊢ 𝑂 = ( oppCat ‘ 𝐶 ) | |
| 2 | natoppf.p | ⊢ 𝑃 = ( oppCat ‘ 𝐷 ) | |
| 3 | natoppf.n | ⊢ 𝑁 = ( 𝐶 Nat 𝐷 ) | |
| 4 | natoppf.m | ⊢ 𝑀 = ( 𝑂 Nat 𝑃 ) | |
| 5 | natoppfb.k | ⊢ ( 𝜑 → 𝐾 = ( oppFunc ‘ 𝐹 ) ) | |
| 6 | natoppfb.l | ⊢ ( 𝜑 → 𝐿 = ( oppFunc ‘ 𝐺 ) ) | |
| 7 | natoppf2.a | ⊢ ( 𝜑 → 𝐴 ∈ ( 𝐹 𝑁 𝐺 ) ) | |
| 8 | 3 7 | nat1st2nd | ⊢ ( 𝜑 → 𝐴 ∈ ( 〈 ( 1st ‘ 𝐹 ) , ( 2nd ‘ 𝐹 ) 〉 𝑁 〈 ( 1st ‘ 𝐺 ) , ( 2nd ‘ 𝐺 ) 〉 ) ) |
| 9 | 1 2 3 4 8 | natoppf | ⊢ ( 𝜑 → 𝐴 ∈ ( 〈 ( 1st ‘ 𝐺 ) , tpos ( 2nd ‘ 𝐺 ) 〉 𝑀 〈 ( 1st ‘ 𝐹 ) , tpos ( 2nd ‘ 𝐹 ) 〉 ) ) |
| 10 | 3 | natrcl | ⊢ ( 𝐴 ∈ ( 𝐹 𝑁 𝐺 ) → ( 𝐹 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝐺 ∈ ( 𝐶 Func 𝐷 ) ) ) |
| 11 | 10 | simprd | ⊢ ( 𝐴 ∈ ( 𝐹 𝑁 𝐺 ) → 𝐺 ∈ ( 𝐶 Func 𝐷 ) ) |
| 12 | oppfval2 | ⊢ ( 𝐺 ∈ ( 𝐶 Func 𝐷 ) → ( oppFunc ‘ 𝐺 ) = 〈 ( 1st ‘ 𝐺 ) , tpos ( 2nd ‘ 𝐺 ) 〉 ) | |
| 13 | 7 11 12 | 3syl | ⊢ ( 𝜑 → ( oppFunc ‘ 𝐺 ) = 〈 ( 1st ‘ 𝐺 ) , tpos ( 2nd ‘ 𝐺 ) 〉 ) |
| 14 | 6 13 | eqtrd | ⊢ ( 𝜑 → 𝐿 = 〈 ( 1st ‘ 𝐺 ) , tpos ( 2nd ‘ 𝐺 ) 〉 ) |
| 15 | 10 | simpld | ⊢ ( 𝐴 ∈ ( 𝐹 𝑁 𝐺 ) → 𝐹 ∈ ( 𝐶 Func 𝐷 ) ) |
| 16 | oppfval2 | ⊢ ( 𝐹 ∈ ( 𝐶 Func 𝐷 ) → ( oppFunc ‘ 𝐹 ) = 〈 ( 1st ‘ 𝐹 ) , tpos ( 2nd ‘ 𝐹 ) 〉 ) | |
| 17 | 7 15 16 | 3syl | ⊢ ( 𝜑 → ( oppFunc ‘ 𝐹 ) = 〈 ( 1st ‘ 𝐹 ) , tpos ( 2nd ‘ 𝐹 ) 〉 ) |
| 18 | 5 17 | eqtrd | ⊢ ( 𝜑 → 𝐾 = 〈 ( 1st ‘ 𝐹 ) , tpos ( 2nd ‘ 𝐹 ) 〉 ) |
| 19 | 14 18 | oveq12d | ⊢ ( 𝜑 → ( 𝐿 𝑀 𝐾 ) = ( 〈 ( 1st ‘ 𝐺 ) , tpos ( 2nd ‘ 𝐺 ) 〉 𝑀 〈 ( 1st ‘ 𝐹 ) , tpos ( 2nd ‘ 𝐹 ) 〉 ) ) |
| 20 | 9 19 | eleqtrrd | ⊢ ( 𝜑 → 𝐴 ∈ ( 𝐿 𝑀 𝐾 ) ) |