This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Naturality property of a natural transformation. (Contributed by Mario Carneiro, 6-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | natrcl.1 | ⊢ 𝑁 = ( 𝐶 Nat 𝐷 ) | |
| natixp.2 | ⊢ ( 𝜑 → 𝐴 ∈ ( 〈 𝐹 , 𝐺 〉 𝑁 〈 𝐾 , 𝐿 〉 ) ) | ||
| natixp.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | ||
| nati.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | ||
| nati.o | ⊢ · = ( comp ‘ 𝐷 ) | ||
| nati.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| nati.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| nati.r | ⊢ ( 𝜑 → 𝑅 ∈ ( 𝑋 𝐻 𝑌 ) ) | ||
| Assertion | nati | ⊢ ( 𝜑 → ( ( 𝐴 ‘ 𝑌 ) ( 〈 ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑌 ) 〉 · ( 𝐾 ‘ 𝑌 ) ) ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) ) = ( ( ( 𝑋 𝐿 𝑌 ) ‘ 𝑅 ) ( 〈 ( 𝐹 ‘ 𝑋 ) , ( 𝐾 ‘ 𝑋 ) 〉 · ( 𝐾 ‘ 𝑌 ) ) ( 𝐴 ‘ 𝑋 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | natrcl.1 | ⊢ 𝑁 = ( 𝐶 Nat 𝐷 ) | |
| 2 | natixp.2 | ⊢ ( 𝜑 → 𝐴 ∈ ( 〈 𝐹 , 𝐺 〉 𝑁 〈 𝐾 , 𝐿 〉 ) ) | |
| 3 | natixp.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| 4 | nati.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | |
| 5 | nati.o | ⊢ · = ( comp ‘ 𝐷 ) | |
| 6 | nati.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 7 | nati.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 8 | nati.r | ⊢ ( 𝜑 → 𝑅 ∈ ( 𝑋 𝐻 𝑌 ) ) | |
| 9 | eqid | ⊢ ( Hom ‘ 𝐷 ) = ( Hom ‘ 𝐷 ) | |
| 10 | 1 | natrcl | ⊢ ( 𝐴 ∈ ( 〈 𝐹 , 𝐺 〉 𝑁 〈 𝐾 , 𝐿 〉 ) → ( 〈 𝐹 , 𝐺 〉 ∈ ( 𝐶 Func 𝐷 ) ∧ 〈 𝐾 , 𝐿 〉 ∈ ( 𝐶 Func 𝐷 ) ) ) |
| 11 | 2 10 | syl | ⊢ ( 𝜑 → ( 〈 𝐹 , 𝐺 〉 ∈ ( 𝐶 Func 𝐷 ) ∧ 〈 𝐾 , 𝐿 〉 ∈ ( 𝐶 Func 𝐷 ) ) ) |
| 12 | 11 | simpld | ⊢ ( 𝜑 → 〈 𝐹 , 𝐺 〉 ∈ ( 𝐶 Func 𝐷 ) ) |
| 13 | df-br | ⊢ ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ↔ 〈 𝐹 , 𝐺 〉 ∈ ( 𝐶 Func 𝐷 ) ) | |
| 14 | 12 13 | sylibr | ⊢ ( 𝜑 → 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) |
| 15 | 11 | simprd | ⊢ ( 𝜑 → 〈 𝐾 , 𝐿 〉 ∈ ( 𝐶 Func 𝐷 ) ) |
| 16 | df-br | ⊢ ( 𝐾 ( 𝐶 Func 𝐷 ) 𝐿 ↔ 〈 𝐾 , 𝐿 〉 ∈ ( 𝐶 Func 𝐷 ) ) | |
| 17 | 15 16 | sylibr | ⊢ ( 𝜑 → 𝐾 ( 𝐶 Func 𝐷 ) 𝐿 ) |
| 18 | 1 3 4 9 5 14 17 | isnat | ⊢ ( 𝜑 → ( 𝐴 ∈ ( 〈 𝐹 , 𝐺 〉 𝑁 〈 𝐾 , 𝐿 〉 ) ↔ ( 𝐴 ∈ X 𝑥 ∈ 𝐵 ( ( 𝐹 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝐾 ‘ 𝑥 ) ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ( ( 𝐴 ‘ 𝑦 ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 · ( 𝐾 ‘ 𝑦 ) ) ( ( 𝑥 𝐺 𝑦 ) ‘ 𝑓 ) ) = ( ( ( 𝑥 𝐿 𝑦 ) ‘ 𝑓 ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐾 ‘ 𝑥 ) 〉 · ( 𝐾 ‘ 𝑦 ) ) ( 𝐴 ‘ 𝑥 ) ) ) ) ) |
| 19 | 2 18 | mpbid | ⊢ ( 𝜑 → ( 𝐴 ∈ X 𝑥 ∈ 𝐵 ( ( 𝐹 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝐾 ‘ 𝑥 ) ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ( ( 𝐴 ‘ 𝑦 ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 · ( 𝐾 ‘ 𝑦 ) ) ( ( 𝑥 𝐺 𝑦 ) ‘ 𝑓 ) ) = ( ( ( 𝑥 𝐿 𝑦 ) ‘ 𝑓 ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐾 ‘ 𝑥 ) 〉 · ( 𝐾 ‘ 𝑦 ) ) ( 𝐴 ‘ 𝑥 ) ) ) ) |
| 20 | 19 | simprd | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ( ( 𝐴 ‘ 𝑦 ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 · ( 𝐾 ‘ 𝑦 ) ) ( ( 𝑥 𝐺 𝑦 ) ‘ 𝑓 ) ) = ( ( ( 𝑥 𝐿 𝑦 ) ‘ 𝑓 ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐾 ‘ 𝑥 ) 〉 · ( 𝐾 ‘ 𝑦 ) ) ( 𝐴 ‘ 𝑥 ) ) ) |
| 21 | 7 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝑋 ) → 𝑌 ∈ 𝐵 ) |
| 22 | 8 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) → 𝑅 ∈ ( 𝑋 𝐻 𝑌 ) ) |
| 23 | simplr | ⊢ ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) → 𝑥 = 𝑋 ) | |
| 24 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) → 𝑦 = 𝑌 ) | |
| 25 | 23 24 | oveq12d | ⊢ ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) → ( 𝑥 𝐻 𝑦 ) = ( 𝑋 𝐻 𝑌 ) ) |
| 26 | 22 25 | eleqtrrd | ⊢ ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) → 𝑅 ∈ ( 𝑥 𝐻 𝑦 ) ) |
| 27 | simpllr | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑓 = 𝑅 ) → 𝑥 = 𝑋 ) | |
| 28 | 27 | fveq2d | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑓 = 𝑅 ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑋 ) ) |
| 29 | simplr | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑓 = 𝑅 ) → 𝑦 = 𝑌 ) | |
| 30 | 29 | fveq2d | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑓 = 𝑅 ) → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑌 ) ) |
| 31 | 28 30 | opeq12d | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑓 = 𝑅 ) → 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 = 〈 ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑌 ) 〉 ) |
| 32 | 29 | fveq2d | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑓 = 𝑅 ) → ( 𝐾 ‘ 𝑦 ) = ( 𝐾 ‘ 𝑌 ) ) |
| 33 | 31 32 | oveq12d | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑓 = 𝑅 ) → ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 · ( 𝐾 ‘ 𝑦 ) ) = ( 〈 ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑌 ) 〉 · ( 𝐾 ‘ 𝑌 ) ) ) |
| 34 | 29 | fveq2d | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑓 = 𝑅 ) → ( 𝐴 ‘ 𝑦 ) = ( 𝐴 ‘ 𝑌 ) ) |
| 35 | 27 29 | oveq12d | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑓 = 𝑅 ) → ( 𝑥 𝐺 𝑦 ) = ( 𝑋 𝐺 𝑌 ) ) |
| 36 | simpr | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑓 = 𝑅 ) → 𝑓 = 𝑅 ) | |
| 37 | 35 36 | fveq12d | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑓 = 𝑅 ) → ( ( 𝑥 𝐺 𝑦 ) ‘ 𝑓 ) = ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) ) |
| 38 | 33 34 37 | oveq123d | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑓 = 𝑅 ) → ( ( 𝐴 ‘ 𝑦 ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 · ( 𝐾 ‘ 𝑦 ) ) ( ( 𝑥 𝐺 𝑦 ) ‘ 𝑓 ) ) = ( ( 𝐴 ‘ 𝑌 ) ( 〈 ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑌 ) 〉 · ( 𝐾 ‘ 𝑌 ) ) ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) ) ) |
| 39 | 27 | fveq2d | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑓 = 𝑅 ) → ( 𝐾 ‘ 𝑥 ) = ( 𝐾 ‘ 𝑋 ) ) |
| 40 | 28 39 | opeq12d | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑓 = 𝑅 ) → 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐾 ‘ 𝑥 ) 〉 = 〈 ( 𝐹 ‘ 𝑋 ) , ( 𝐾 ‘ 𝑋 ) 〉 ) |
| 41 | 40 32 | oveq12d | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑓 = 𝑅 ) → ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐾 ‘ 𝑥 ) 〉 · ( 𝐾 ‘ 𝑦 ) ) = ( 〈 ( 𝐹 ‘ 𝑋 ) , ( 𝐾 ‘ 𝑋 ) 〉 · ( 𝐾 ‘ 𝑌 ) ) ) |
| 42 | 27 29 | oveq12d | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑓 = 𝑅 ) → ( 𝑥 𝐿 𝑦 ) = ( 𝑋 𝐿 𝑌 ) ) |
| 43 | 42 36 | fveq12d | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑓 = 𝑅 ) → ( ( 𝑥 𝐿 𝑦 ) ‘ 𝑓 ) = ( ( 𝑋 𝐿 𝑌 ) ‘ 𝑅 ) ) |
| 44 | 27 | fveq2d | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑓 = 𝑅 ) → ( 𝐴 ‘ 𝑥 ) = ( 𝐴 ‘ 𝑋 ) ) |
| 45 | 41 43 44 | oveq123d | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑓 = 𝑅 ) → ( ( ( 𝑥 𝐿 𝑦 ) ‘ 𝑓 ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐾 ‘ 𝑥 ) 〉 · ( 𝐾 ‘ 𝑦 ) ) ( 𝐴 ‘ 𝑥 ) ) = ( ( ( 𝑋 𝐿 𝑌 ) ‘ 𝑅 ) ( 〈 ( 𝐹 ‘ 𝑋 ) , ( 𝐾 ‘ 𝑋 ) 〉 · ( 𝐾 ‘ 𝑌 ) ) ( 𝐴 ‘ 𝑋 ) ) ) |
| 46 | 38 45 | eqeq12d | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑓 = 𝑅 ) → ( ( ( 𝐴 ‘ 𝑦 ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 · ( 𝐾 ‘ 𝑦 ) ) ( ( 𝑥 𝐺 𝑦 ) ‘ 𝑓 ) ) = ( ( ( 𝑥 𝐿 𝑦 ) ‘ 𝑓 ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐾 ‘ 𝑥 ) 〉 · ( 𝐾 ‘ 𝑦 ) ) ( 𝐴 ‘ 𝑥 ) ) ↔ ( ( 𝐴 ‘ 𝑌 ) ( 〈 ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑌 ) 〉 · ( 𝐾 ‘ 𝑌 ) ) ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) ) = ( ( ( 𝑋 𝐿 𝑌 ) ‘ 𝑅 ) ( 〈 ( 𝐹 ‘ 𝑋 ) , ( 𝐾 ‘ 𝑋 ) 〉 · ( 𝐾 ‘ 𝑌 ) ) ( 𝐴 ‘ 𝑋 ) ) ) ) |
| 47 | 26 46 | rspcdv | ⊢ ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) → ( ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ( ( 𝐴 ‘ 𝑦 ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 · ( 𝐾 ‘ 𝑦 ) ) ( ( 𝑥 𝐺 𝑦 ) ‘ 𝑓 ) ) = ( ( ( 𝑥 𝐿 𝑦 ) ‘ 𝑓 ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐾 ‘ 𝑥 ) 〉 · ( 𝐾 ‘ 𝑦 ) ) ( 𝐴 ‘ 𝑥 ) ) → ( ( 𝐴 ‘ 𝑌 ) ( 〈 ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑌 ) 〉 · ( 𝐾 ‘ 𝑌 ) ) ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) ) = ( ( ( 𝑋 𝐿 𝑌 ) ‘ 𝑅 ) ( 〈 ( 𝐹 ‘ 𝑋 ) , ( 𝐾 ‘ 𝑋 ) 〉 · ( 𝐾 ‘ 𝑌 ) ) ( 𝐴 ‘ 𝑋 ) ) ) ) |
| 48 | 21 47 | rspcimdv | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝑋 ) → ( ∀ 𝑦 ∈ 𝐵 ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ( ( 𝐴 ‘ 𝑦 ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 · ( 𝐾 ‘ 𝑦 ) ) ( ( 𝑥 𝐺 𝑦 ) ‘ 𝑓 ) ) = ( ( ( 𝑥 𝐿 𝑦 ) ‘ 𝑓 ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐾 ‘ 𝑥 ) 〉 · ( 𝐾 ‘ 𝑦 ) ) ( 𝐴 ‘ 𝑥 ) ) → ( ( 𝐴 ‘ 𝑌 ) ( 〈 ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑌 ) 〉 · ( 𝐾 ‘ 𝑌 ) ) ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) ) = ( ( ( 𝑋 𝐿 𝑌 ) ‘ 𝑅 ) ( 〈 ( 𝐹 ‘ 𝑋 ) , ( 𝐾 ‘ 𝑋 ) 〉 · ( 𝐾 ‘ 𝑌 ) ) ( 𝐴 ‘ 𝑋 ) ) ) ) |
| 49 | 6 48 | rspcimdv | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ( ( 𝐴 ‘ 𝑦 ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 · ( 𝐾 ‘ 𝑦 ) ) ( ( 𝑥 𝐺 𝑦 ) ‘ 𝑓 ) ) = ( ( ( 𝑥 𝐿 𝑦 ) ‘ 𝑓 ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐾 ‘ 𝑥 ) 〉 · ( 𝐾 ‘ 𝑦 ) ) ( 𝐴 ‘ 𝑥 ) ) → ( ( 𝐴 ‘ 𝑌 ) ( 〈 ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑌 ) 〉 · ( 𝐾 ‘ 𝑌 ) ) ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) ) = ( ( ( 𝑋 𝐿 𝑌 ) ‘ 𝑅 ) ( 〈 ( 𝐹 ‘ 𝑋 ) , ( 𝐾 ‘ 𝑋 ) 〉 · ( 𝐾 ‘ 𝑌 ) ) ( 𝐴 ‘ 𝑋 ) ) ) ) |
| 50 | 20 49 | mpd | ⊢ ( 𝜑 → ( ( 𝐴 ‘ 𝑌 ) ( 〈 ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑌 ) 〉 · ( 𝐾 ‘ 𝑌 ) ) ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) ) = ( ( ( 𝑋 𝐿 𝑌 ) ‘ 𝑅 ) ( 〈 ( 𝐹 ‘ 𝑋 ) , ( 𝐾 ‘ 𝑋 ) 〉 · ( 𝐾 ‘ 𝑌 ) ) ( 𝐴 ‘ 𝑋 ) ) ) |