This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A natural transformation is natural between opposite functors. (Contributed by Zhi Wang, 18-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | natoppf.o | |- O = ( oppCat ` C ) |
|
| natoppf.p | |- P = ( oppCat ` D ) |
||
| natoppf.n | |- N = ( C Nat D ) |
||
| natoppf.m | |- M = ( O Nat P ) |
||
| natoppf.a | |- ( ph -> A e. ( <. F , G >. N <. K , L >. ) ) |
||
| Assertion | natoppf | |- ( ph -> A e. ( <. K , tpos L >. M <. F , tpos G >. ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | natoppf.o | |- O = ( oppCat ` C ) |
|
| 2 | natoppf.p | |- P = ( oppCat ` D ) |
|
| 3 | natoppf.n | |- N = ( C Nat D ) |
|
| 4 | natoppf.m | |- M = ( O Nat P ) |
|
| 5 | natoppf.a | |- ( ph -> A e. ( <. F , G >. N <. K , L >. ) ) |
|
| 6 | eqid | |- ( Base ` C ) = ( Base ` C ) |
|
| 7 | 1 6 | oppcbas | |- ( Base ` C ) = ( Base ` O ) |
| 8 | eqid | |- ( Hom ` O ) = ( Hom ` O ) |
|
| 9 | eqid | |- ( Hom ` P ) = ( Hom ` P ) |
|
| 10 | eqid | |- ( comp ` P ) = ( comp ` P ) |
|
| 11 | 3 5 | natrcl3 | |- ( ph -> K ( C Func D ) L ) |
| 12 | 1 2 11 | funcoppc | |- ( ph -> K ( O Func P ) tpos L ) |
| 13 | 3 5 | natrcl2 | |- ( ph -> F ( C Func D ) G ) |
| 14 | 1 2 13 | funcoppc | |- ( ph -> F ( O Func P ) tpos G ) |
| 15 | 3 5 6 | natfn | |- ( ph -> A Fn ( Base ` C ) ) |
| 16 | 5 | adantr | |- ( ( ph /\ x e. ( Base ` C ) ) -> A e. ( <. F , G >. N <. K , L >. ) ) |
| 17 | eqid | |- ( Hom ` D ) = ( Hom ` D ) |
|
| 18 | simpr | |- ( ( ph /\ x e. ( Base ` C ) ) -> x e. ( Base ` C ) ) |
|
| 19 | 3 16 6 17 18 | natcl | |- ( ( ph /\ x e. ( Base ` C ) ) -> ( A ` x ) e. ( ( F ` x ) ( Hom ` D ) ( K ` x ) ) ) |
| 20 | 17 2 | oppchom | |- ( ( K ` x ) ( Hom ` P ) ( F ` x ) ) = ( ( F ` x ) ( Hom ` D ) ( K ` x ) ) |
| 21 | 19 20 | eleqtrrdi | |- ( ( ph /\ x e. ( Base ` C ) ) -> ( A ` x ) e. ( ( K ` x ) ( Hom ` P ) ( F ` x ) ) ) |
| 22 | 5 | ad2antrr | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ m e. ( x ( Hom ` O ) y ) ) -> A e. ( <. F , G >. N <. K , L >. ) ) |
| 23 | eqid | |- ( Hom ` C ) = ( Hom ` C ) |
|
| 24 | eqid | |- ( comp ` D ) = ( comp ` D ) |
|
| 25 | simplrr | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ m e. ( x ( Hom ` O ) y ) ) -> y e. ( Base ` C ) ) |
|
| 26 | simplrl | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ m e. ( x ( Hom ` O ) y ) ) -> x e. ( Base ` C ) ) |
|
| 27 | simpr | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ m e. ( x ( Hom ` O ) y ) ) -> m e. ( x ( Hom ` O ) y ) ) |
|
| 28 | 23 1 | oppchom | |- ( x ( Hom ` O ) y ) = ( y ( Hom ` C ) x ) |
| 29 | 27 28 | eleqtrdi | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ m e. ( x ( Hom ` O ) y ) ) -> m e. ( y ( Hom ` C ) x ) ) |
| 30 | 3 22 6 23 24 25 26 29 | nati | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ m e. ( x ( Hom ` O ) y ) ) -> ( ( A ` x ) ( <. ( F ` y ) , ( F ` x ) >. ( comp ` D ) ( K ` x ) ) ( ( y G x ) ` m ) ) = ( ( ( y L x ) ` m ) ( <. ( F ` y ) , ( K ` y ) >. ( comp ` D ) ( K ` x ) ) ( A ` y ) ) ) |
| 31 | eqid | |- ( Base ` D ) = ( Base ` D ) |
|
| 32 | 6 31 11 | funcf1 | |- ( ph -> K : ( Base ` C ) --> ( Base ` D ) ) |
| 33 | 32 | ad2antrr | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ m e. ( x ( Hom ` O ) y ) ) -> K : ( Base ` C ) --> ( Base ` D ) ) |
| 34 | 33 26 | ffvelcdmd | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ m e. ( x ( Hom ` O ) y ) ) -> ( K ` x ) e. ( Base ` D ) ) |
| 35 | 6 31 13 | funcf1 | |- ( ph -> F : ( Base ` C ) --> ( Base ` D ) ) |
| 36 | 35 | ad2antrr | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ m e. ( x ( Hom ` O ) y ) ) -> F : ( Base ` C ) --> ( Base ` D ) ) |
| 37 | 36 26 | ffvelcdmd | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ m e. ( x ( Hom ` O ) y ) ) -> ( F ` x ) e. ( Base ` D ) ) |
| 38 | 36 25 | ffvelcdmd | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ m e. ( x ( Hom ` O ) y ) ) -> ( F ` y ) e. ( Base ` D ) ) |
| 39 | 31 24 2 34 37 38 | oppcco | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ m e. ( x ( Hom ` O ) y ) ) -> ( ( ( y G x ) ` m ) ( <. ( K ` x ) , ( F ` x ) >. ( comp ` P ) ( F ` y ) ) ( A ` x ) ) = ( ( A ` x ) ( <. ( F ` y ) , ( F ` x ) >. ( comp ` D ) ( K ` x ) ) ( ( y G x ) ` m ) ) ) |
| 40 | 33 25 | ffvelcdmd | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ m e. ( x ( Hom ` O ) y ) ) -> ( K ` y ) e. ( Base ` D ) ) |
| 41 | 31 24 2 34 40 38 | oppcco | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ m e. ( x ( Hom ` O ) y ) ) -> ( ( A ` y ) ( <. ( K ` x ) , ( K ` y ) >. ( comp ` P ) ( F ` y ) ) ( ( y L x ) ` m ) ) = ( ( ( y L x ) ` m ) ( <. ( F ` y ) , ( K ` y ) >. ( comp ` D ) ( K ` x ) ) ( A ` y ) ) ) |
| 42 | 30 39 41 | 3eqtr4rd | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ m e. ( x ( Hom ` O ) y ) ) -> ( ( A ` y ) ( <. ( K ` x ) , ( K ` y ) >. ( comp ` P ) ( F ` y ) ) ( ( y L x ) ` m ) ) = ( ( ( y G x ) ` m ) ( <. ( K ` x ) , ( F ` x ) >. ( comp ` P ) ( F ` y ) ) ( A ` x ) ) ) |
| 43 | ovtpos | |- ( x tpos L y ) = ( y L x ) |
|
| 44 | 43 | fveq1i | |- ( ( x tpos L y ) ` m ) = ( ( y L x ) ` m ) |
| 45 | 44 | oveq2i | |- ( ( A ` y ) ( <. ( K ` x ) , ( K ` y ) >. ( comp ` P ) ( F ` y ) ) ( ( x tpos L y ) ` m ) ) = ( ( A ` y ) ( <. ( K ` x ) , ( K ` y ) >. ( comp ` P ) ( F ` y ) ) ( ( y L x ) ` m ) ) |
| 46 | ovtpos | |- ( x tpos G y ) = ( y G x ) |
|
| 47 | 46 | fveq1i | |- ( ( x tpos G y ) ` m ) = ( ( y G x ) ` m ) |
| 48 | 47 | oveq1i | |- ( ( ( x tpos G y ) ` m ) ( <. ( K ` x ) , ( F ` x ) >. ( comp ` P ) ( F ` y ) ) ( A ` x ) ) = ( ( ( y G x ) ` m ) ( <. ( K ` x ) , ( F ` x ) >. ( comp ` P ) ( F ` y ) ) ( A ` x ) ) |
| 49 | 42 45 48 | 3eqtr4g | |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ m e. ( x ( Hom ` O ) y ) ) -> ( ( A ` y ) ( <. ( K ` x ) , ( K ` y ) >. ( comp ` P ) ( F ` y ) ) ( ( x tpos L y ) ` m ) ) = ( ( ( x tpos G y ) ` m ) ( <. ( K ` x ) , ( F ` x ) >. ( comp ` P ) ( F ` y ) ) ( A ` x ) ) ) |
| 50 | 4 7 8 9 10 12 14 15 21 49 | isnatd | |- ( ph -> A e. ( <. K , tpos L >. M <. F , tpos G >. ) ) |