This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A functor on categories yields a functor on the opposite categories (in the same direction), see definition 3.41 of Adamek p. 39. (Contributed by Mario Carneiro, 4-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | funcoppc.o | ⊢ 𝑂 = ( oppCat ‘ 𝐶 ) | |
| funcoppc.p | ⊢ 𝑃 = ( oppCat ‘ 𝐷 ) | ||
| funcoppc.f | ⊢ ( 𝜑 → 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) | ||
| Assertion | funcoppc | ⊢ ( 𝜑 → 𝐹 ( 𝑂 Func 𝑃 ) tpos 𝐺 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funcoppc.o | ⊢ 𝑂 = ( oppCat ‘ 𝐶 ) | |
| 2 | funcoppc.p | ⊢ 𝑃 = ( oppCat ‘ 𝐷 ) | |
| 3 | funcoppc.f | ⊢ ( 𝜑 → 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) | |
| 4 | eqid | ⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) | |
| 5 | 1 4 | oppcbas | ⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝑂 ) |
| 6 | eqid | ⊢ ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 ) | |
| 7 | 2 6 | oppcbas | ⊢ ( Base ‘ 𝐷 ) = ( Base ‘ 𝑃 ) |
| 8 | eqid | ⊢ ( Hom ‘ 𝑂 ) = ( Hom ‘ 𝑂 ) | |
| 9 | eqid | ⊢ ( Hom ‘ 𝑃 ) = ( Hom ‘ 𝑃 ) | |
| 10 | eqid | ⊢ ( Id ‘ 𝑂 ) = ( Id ‘ 𝑂 ) | |
| 11 | eqid | ⊢ ( Id ‘ 𝑃 ) = ( Id ‘ 𝑃 ) | |
| 12 | eqid | ⊢ ( comp ‘ 𝑂 ) = ( comp ‘ 𝑂 ) | |
| 13 | eqid | ⊢ ( comp ‘ 𝑃 ) = ( comp ‘ 𝑃 ) | |
| 14 | df-br | ⊢ ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ↔ 〈 𝐹 , 𝐺 〉 ∈ ( 𝐶 Func 𝐷 ) ) | |
| 15 | 3 14 | sylib | ⊢ ( 𝜑 → 〈 𝐹 , 𝐺 〉 ∈ ( 𝐶 Func 𝐷 ) ) |
| 16 | funcrcl | ⊢ ( 〈 𝐹 , 𝐺 〉 ∈ ( 𝐶 Func 𝐷 ) → ( 𝐶 ∈ Cat ∧ 𝐷 ∈ Cat ) ) | |
| 17 | 15 16 | syl | ⊢ ( 𝜑 → ( 𝐶 ∈ Cat ∧ 𝐷 ∈ Cat ) ) |
| 18 | 17 | simpld | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
| 19 | 1 | oppccat | ⊢ ( 𝐶 ∈ Cat → 𝑂 ∈ Cat ) |
| 20 | 18 19 | syl | ⊢ ( 𝜑 → 𝑂 ∈ Cat ) |
| 21 | 2 | oppccat | ⊢ ( 𝐷 ∈ Cat → 𝑃 ∈ Cat ) |
| 22 | 17 21 | simpl2im | ⊢ ( 𝜑 → 𝑃 ∈ Cat ) |
| 23 | 4 6 3 | funcf1 | ⊢ ( 𝜑 → 𝐹 : ( Base ‘ 𝐶 ) ⟶ ( Base ‘ 𝐷 ) ) |
| 24 | 4 3 | funcfn2 | ⊢ ( 𝜑 → 𝐺 Fn ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) |
| 25 | tposfn | ⊢ ( 𝐺 Fn ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) → tpos 𝐺 Fn ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) | |
| 26 | 24 25 | syl | ⊢ ( 𝜑 → tpos 𝐺 Fn ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) |
| 27 | eqid | ⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) | |
| 28 | eqid | ⊢ ( Hom ‘ 𝐷 ) = ( Hom ‘ 𝐷 ) | |
| 29 | 3 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) |
| 30 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → 𝑦 ∈ ( Base ‘ 𝐶 ) ) | |
| 31 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → 𝑥 ∈ ( Base ‘ 𝐶 ) ) | |
| 32 | 4 27 28 29 30 31 | funcf2 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → ( 𝑦 𝐺 𝑥 ) : ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ⟶ ( ( 𝐹 ‘ 𝑦 ) ( Hom ‘ 𝐷 ) ( 𝐹 ‘ 𝑥 ) ) ) |
| 33 | ovtpos | ⊢ ( 𝑥 tpos 𝐺 𝑦 ) = ( 𝑦 𝐺 𝑥 ) | |
| 34 | 33 | feq1i | ⊢ ( ( 𝑥 tpos 𝐺 𝑦 ) : ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ⟶ ( ( 𝐹 ‘ 𝑥 ) ( Hom ‘ 𝑃 ) ( 𝐹 ‘ 𝑦 ) ) ↔ ( 𝑦 𝐺 𝑥 ) : ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ⟶ ( ( 𝐹 ‘ 𝑥 ) ( Hom ‘ 𝑃 ) ( 𝐹 ‘ 𝑦 ) ) ) |
| 35 | 27 1 | oppchom | ⊢ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) = ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) |
| 36 | 28 2 | oppchom | ⊢ ( ( 𝐹 ‘ 𝑥 ) ( Hom ‘ 𝑃 ) ( 𝐹 ‘ 𝑦 ) ) = ( ( 𝐹 ‘ 𝑦 ) ( Hom ‘ 𝐷 ) ( 𝐹 ‘ 𝑥 ) ) |
| 37 | 35 36 | feq23i | ⊢ ( ( 𝑦 𝐺 𝑥 ) : ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ⟶ ( ( 𝐹 ‘ 𝑥 ) ( Hom ‘ 𝑃 ) ( 𝐹 ‘ 𝑦 ) ) ↔ ( 𝑦 𝐺 𝑥 ) : ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ⟶ ( ( 𝐹 ‘ 𝑦 ) ( Hom ‘ 𝐷 ) ( 𝐹 ‘ 𝑥 ) ) ) |
| 38 | 34 37 | bitri | ⊢ ( ( 𝑥 tpos 𝐺 𝑦 ) : ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ⟶ ( ( 𝐹 ‘ 𝑥 ) ( Hom ‘ 𝑃 ) ( 𝐹 ‘ 𝑦 ) ) ↔ ( 𝑦 𝐺 𝑥 ) : ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ⟶ ( ( 𝐹 ‘ 𝑦 ) ( Hom ‘ 𝐷 ) ( 𝐹 ‘ 𝑥 ) ) ) |
| 39 | 32 38 | sylibr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → ( 𝑥 tpos 𝐺 𝑦 ) : ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ⟶ ( ( 𝐹 ‘ 𝑥 ) ( Hom ‘ 𝑃 ) ( 𝐹 ‘ 𝑦 ) ) ) |
| 40 | eqid | ⊢ ( Id ‘ 𝐶 ) = ( Id ‘ 𝐶 ) | |
| 41 | eqid | ⊢ ( Id ‘ 𝐷 ) = ( Id ‘ 𝐷 ) | |
| 42 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) |
| 43 | simpr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → 𝑥 ∈ ( Base ‘ 𝐶 ) ) | |
| 44 | 4 40 41 42 43 | funcid | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ( 𝑥 𝐺 𝑥 ) ‘ ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝐷 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
| 45 | ovtpos | ⊢ ( 𝑥 tpos 𝐺 𝑥 ) = ( 𝑥 𝐺 𝑥 ) | |
| 46 | 45 | a1i | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( 𝑥 tpos 𝐺 𝑥 ) = ( 𝑥 𝐺 𝑥 ) ) |
| 47 | 1 40 | oppcid | ⊢ ( 𝐶 ∈ Cat → ( Id ‘ 𝑂 ) = ( Id ‘ 𝐶 ) ) |
| 48 | 18 47 | syl | ⊢ ( 𝜑 → ( Id ‘ 𝑂 ) = ( Id ‘ 𝐶 ) ) |
| 49 | 48 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( Id ‘ 𝑂 ) = ( Id ‘ 𝐶 ) ) |
| 50 | 49 | fveq1d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ( Id ‘ 𝑂 ) ‘ 𝑥 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ) |
| 51 | 46 50 | fveq12d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ( 𝑥 tpos 𝐺 𝑥 ) ‘ ( ( Id ‘ 𝑂 ) ‘ 𝑥 ) ) = ( ( 𝑥 𝐺 𝑥 ) ‘ ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ) ) |
| 52 | 2 41 | oppcid | ⊢ ( 𝐷 ∈ Cat → ( Id ‘ 𝑃 ) = ( Id ‘ 𝐷 ) ) |
| 53 | 17 52 | simpl2im | ⊢ ( 𝜑 → ( Id ‘ 𝑃 ) = ( Id ‘ 𝐷 ) ) |
| 54 | 53 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( Id ‘ 𝑃 ) = ( Id ‘ 𝐷 ) ) |
| 55 | 54 | fveq1d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ( Id ‘ 𝑃 ) ‘ ( 𝐹 ‘ 𝑥 ) ) = ( ( Id ‘ 𝐷 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
| 56 | 44 51 55 | 3eqtr4d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ( 𝑥 tpos 𝐺 𝑥 ) ‘ ( ( Id ‘ 𝑂 ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝑃 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
| 57 | eqid | ⊢ ( comp ‘ 𝐶 ) = ( comp ‘ 𝐶 ) | |
| 58 | eqid | ⊢ ( comp ‘ 𝐷 ) = ( comp ‘ 𝐷 ) | |
| 59 | 3 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝑂 ) 𝑧 ) ) ) → 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) |
| 60 | simp23 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝑂 ) 𝑧 ) ) ) → 𝑧 ∈ ( Base ‘ 𝐶 ) ) | |
| 61 | simp22 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝑂 ) 𝑧 ) ) ) → 𝑦 ∈ ( Base ‘ 𝐶 ) ) | |
| 62 | simp21 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝑂 ) 𝑧 ) ) ) → 𝑥 ∈ ( Base ‘ 𝐶 ) ) | |
| 63 | simp3r | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝑂 ) 𝑧 ) ) ) → 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝑂 ) 𝑧 ) ) | |
| 64 | 27 1 | oppchom | ⊢ ( 𝑦 ( Hom ‘ 𝑂 ) 𝑧 ) = ( 𝑧 ( Hom ‘ 𝐶 ) 𝑦 ) |
| 65 | 63 64 | eleqtrdi | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝑂 ) 𝑧 ) ) ) → 𝑔 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑦 ) ) |
| 66 | simp3l | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝑂 ) 𝑧 ) ) ) → 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ) | |
| 67 | 66 35 | eleqtrdi | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝑂 ) 𝑧 ) ) ) → 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ) |
| 68 | 4 27 57 58 59 60 61 62 65 67 | funcco | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝑂 ) 𝑧 ) ) ) → ( ( 𝑧 𝐺 𝑥 ) ‘ ( 𝑓 ( 〈 𝑧 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑔 ) ) = ( ( ( 𝑦 𝐺 𝑥 ) ‘ 𝑓 ) ( 〈 ( 𝐹 ‘ 𝑧 ) , ( 𝐹 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝐹 ‘ 𝑥 ) ) ( ( 𝑧 𝐺 𝑦 ) ‘ 𝑔 ) ) ) |
| 69 | 4 57 1 62 61 60 | oppcco | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝑂 ) 𝑧 ) ) ) → ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑂 ) 𝑧 ) 𝑓 ) = ( 𝑓 ( 〈 𝑧 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑔 ) ) |
| 70 | 69 | fveq2d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝑂 ) 𝑧 ) ) ) → ( ( 𝑧 𝐺 𝑥 ) ‘ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑂 ) 𝑧 ) 𝑓 ) ) = ( ( 𝑧 𝐺 𝑥 ) ‘ ( 𝑓 ( 〈 𝑧 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑔 ) ) ) |
| 71 | 23 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝑂 ) 𝑧 ) ) ) → 𝐹 : ( Base ‘ 𝐶 ) ⟶ ( Base ‘ 𝐷 ) ) |
| 72 | 71 62 | ffvelcdmd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝑂 ) 𝑧 ) ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ( Base ‘ 𝐷 ) ) |
| 73 | 71 61 | ffvelcdmd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝑂 ) 𝑧 ) ) ) → ( 𝐹 ‘ 𝑦 ) ∈ ( Base ‘ 𝐷 ) ) |
| 74 | 71 60 | ffvelcdmd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝑂 ) 𝑧 ) ) ) → ( 𝐹 ‘ 𝑧 ) ∈ ( Base ‘ 𝐷 ) ) |
| 75 | 6 58 2 72 73 74 | oppcco | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝑂 ) 𝑧 ) ) ) → ( ( ( 𝑧 𝐺 𝑦 ) ‘ 𝑔 ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 ( comp ‘ 𝑃 ) ( 𝐹 ‘ 𝑧 ) ) ( ( 𝑦 𝐺 𝑥 ) ‘ 𝑓 ) ) = ( ( ( 𝑦 𝐺 𝑥 ) ‘ 𝑓 ) ( 〈 ( 𝐹 ‘ 𝑧 ) , ( 𝐹 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝐹 ‘ 𝑥 ) ) ( ( 𝑧 𝐺 𝑦 ) ‘ 𝑔 ) ) ) |
| 76 | 68 70 75 | 3eqtr4d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝑂 ) 𝑧 ) ) ) → ( ( 𝑧 𝐺 𝑥 ) ‘ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑂 ) 𝑧 ) 𝑓 ) ) = ( ( ( 𝑧 𝐺 𝑦 ) ‘ 𝑔 ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 ( comp ‘ 𝑃 ) ( 𝐹 ‘ 𝑧 ) ) ( ( 𝑦 𝐺 𝑥 ) ‘ 𝑓 ) ) ) |
| 77 | ovtpos | ⊢ ( 𝑥 tpos 𝐺 𝑧 ) = ( 𝑧 𝐺 𝑥 ) | |
| 78 | 77 | fveq1i | ⊢ ( ( 𝑥 tpos 𝐺 𝑧 ) ‘ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑂 ) 𝑧 ) 𝑓 ) ) = ( ( 𝑧 𝐺 𝑥 ) ‘ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑂 ) 𝑧 ) 𝑓 ) ) |
| 79 | ovtpos | ⊢ ( 𝑦 tpos 𝐺 𝑧 ) = ( 𝑧 𝐺 𝑦 ) | |
| 80 | 79 | fveq1i | ⊢ ( ( 𝑦 tpos 𝐺 𝑧 ) ‘ 𝑔 ) = ( ( 𝑧 𝐺 𝑦 ) ‘ 𝑔 ) |
| 81 | 33 | fveq1i | ⊢ ( ( 𝑥 tpos 𝐺 𝑦 ) ‘ 𝑓 ) = ( ( 𝑦 𝐺 𝑥 ) ‘ 𝑓 ) |
| 82 | 80 81 | oveq12i | ⊢ ( ( ( 𝑦 tpos 𝐺 𝑧 ) ‘ 𝑔 ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 ( comp ‘ 𝑃 ) ( 𝐹 ‘ 𝑧 ) ) ( ( 𝑥 tpos 𝐺 𝑦 ) ‘ 𝑓 ) ) = ( ( ( 𝑧 𝐺 𝑦 ) ‘ 𝑔 ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 ( comp ‘ 𝑃 ) ( 𝐹 ‘ 𝑧 ) ) ( ( 𝑦 𝐺 𝑥 ) ‘ 𝑓 ) ) |
| 83 | 76 78 82 | 3eqtr4g | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝑂 ) 𝑧 ) ) ) → ( ( 𝑥 tpos 𝐺 𝑧 ) ‘ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑂 ) 𝑧 ) 𝑓 ) ) = ( ( ( 𝑦 tpos 𝐺 𝑧 ) ‘ 𝑔 ) ( 〈 ( 𝐹 ‘ 𝑥 ) , ( 𝐹 ‘ 𝑦 ) 〉 ( comp ‘ 𝑃 ) ( 𝐹 ‘ 𝑧 ) ) ( ( 𝑥 tpos 𝐺 𝑦 ) ‘ 𝑓 ) ) ) |
| 84 | 5 7 8 9 10 11 12 13 20 22 23 26 39 56 83 | isfuncd | ⊢ ( 𝜑 → 𝐹 ( 𝑂 Func 𝑃 ) tpos 𝐺 ) |