This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A component of a natural transformation is a morphism. (Contributed by Mario Carneiro, 6-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | natrcl.1 | ⊢ 𝑁 = ( 𝐶 Nat 𝐷 ) | |
| natixp.2 | ⊢ ( 𝜑 → 𝐴 ∈ ( 〈 𝐹 , 𝐺 〉 𝑁 〈 𝐾 , 𝐿 〉 ) ) | ||
| natixp.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | ||
| natixp.j | ⊢ 𝐽 = ( Hom ‘ 𝐷 ) | ||
| natcl.1 | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| Assertion | natcl | ⊢ ( 𝜑 → ( 𝐴 ‘ 𝑋 ) ∈ ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐾 ‘ 𝑋 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | natrcl.1 | ⊢ 𝑁 = ( 𝐶 Nat 𝐷 ) | |
| 2 | natixp.2 | ⊢ ( 𝜑 → 𝐴 ∈ ( 〈 𝐹 , 𝐺 〉 𝑁 〈 𝐾 , 𝐿 〉 ) ) | |
| 3 | natixp.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| 4 | natixp.j | ⊢ 𝐽 = ( Hom ‘ 𝐷 ) | |
| 5 | natcl.1 | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 6 | 1 2 3 4 | natixp | ⊢ ( 𝜑 → 𝐴 ∈ X 𝑥 ∈ 𝐵 ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐾 ‘ 𝑥 ) ) ) |
| 7 | fveq2 | ⊢ ( 𝑥 = 𝑋 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑋 ) ) | |
| 8 | fveq2 | ⊢ ( 𝑥 = 𝑋 → ( 𝐾 ‘ 𝑥 ) = ( 𝐾 ‘ 𝑋 ) ) | |
| 9 | 7 8 | oveq12d | ⊢ ( 𝑥 = 𝑋 → ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐾 ‘ 𝑥 ) ) = ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐾 ‘ 𝑋 ) ) ) |
| 10 | 9 | fvixp | ⊢ ( ( 𝐴 ∈ X 𝑥 ∈ 𝐵 ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐾 ‘ 𝑥 ) ) ∧ 𝑋 ∈ 𝐵 ) → ( 𝐴 ‘ 𝑋 ) ∈ ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐾 ‘ 𝑋 ) ) ) |
| 11 | 6 5 10 | syl2anc | ⊢ ( 𝜑 → ( 𝐴 ‘ 𝑋 ) ∈ ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐾 ‘ 𝑋 ) ) ) |