This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The transposition swaps the arguments in a two-argument function. When F is a matrix, which is to say a function from ( 1 ... m ) X. ( 1 ... n ) to RR or some ring, tpos F is the transposition of F , which is where the name comes from. (Contributed by Mario Carneiro, 10-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ovtpos | ⊢ ( 𝐴 tpos 𝐹 𝐵 ) = ( 𝐵 𝐹 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brtpos | ⊢ ( 𝑦 ∈ V → ( 〈 𝐴 , 𝐵 〉 tpos 𝐹 𝑦 ↔ 〈 𝐵 , 𝐴 〉 𝐹 𝑦 ) ) | |
| 2 | 1 | elv | ⊢ ( 〈 𝐴 , 𝐵 〉 tpos 𝐹 𝑦 ↔ 〈 𝐵 , 𝐴 〉 𝐹 𝑦 ) |
| 3 | 2 | iotabii | ⊢ ( ℩ 𝑦 〈 𝐴 , 𝐵 〉 tpos 𝐹 𝑦 ) = ( ℩ 𝑦 〈 𝐵 , 𝐴 〉 𝐹 𝑦 ) |
| 4 | df-fv | ⊢ ( tpos 𝐹 ‘ 〈 𝐴 , 𝐵 〉 ) = ( ℩ 𝑦 〈 𝐴 , 𝐵 〉 tpos 𝐹 𝑦 ) | |
| 5 | df-fv | ⊢ ( 𝐹 ‘ 〈 𝐵 , 𝐴 〉 ) = ( ℩ 𝑦 〈 𝐵 , 𝐴 〉 𝐹 𝑦 ) | |
| 6 | 3 4 5 | 3eqtr4i | ⊢ ( tpos 𝐹 ‘ 〈 𝐴 , 𝐵 〉 ) = ( 𝐹 ‘ 〈 𝐵 , 𝐴 〉 ) |
| 7 | df-ov | ⊢ ( 𝐴 tpos 𝐹 𝐵 ) = ( tpos 𝐹 ‘ 〈 𝐴 , 𝐵 〉 ) | |
| 8 | df-ov | ⊢ ( 𝐵 𝐹 𝐴 ) = ( 𝐹 ‘ 〈 𝐵 , 𝐴 〉 ) | |
| 9 | 6 7 8 | 3eqtr4i | ⊢ ( 𝐴 tpos 𝐹 𝐵 ) = ( 𝐵 𝐹 𝐴 ) |