This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The powers of the element 1 give a ring homomorphism from ZZ to a ring. (Contributed by Mario Carneiro, 14-Jun-2015) (Revised by AV, 12-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mulgghm2.m | ⊢ · = ( .g ‘ 𝑅 ) | |
| mulgghm2.f | ⊢ 𝐹 = ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 1 ) ) | ||
| mulgrhm.1 | ⊢ 1 = ( 1r ‘ 𝑅 ) | ||
| Assertion | mulgrhm | ⊢ ( 𝑅 ∈ Ring → 𝐹 ∈ ( ℤring RingHom 𝑅 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulgghm2.m | ⊢ · = ( .g ‘ 𝑅 ) | |
| 2 | mulgghm2.f | ⊢ 𝐹 = ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 1 ) ) | |
| 3 | mulgrhm.1 | ⊢ 1 = ( 1r ‘ 𝑅 ) | |
| 4 | zringbas | ⊢ ℤ = ( Base ‘ ℤring ) | |
| 5 | zring1 | ⊢ 1 = ( 1r ‘ ℤring ) | |
| 6 | zringmulr | ⊢ · = ( .r ‘ ℤring ) | |
| 7 | eqid | ⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) | |
| 8 | zringring | ⊢ ℤring ∈ Ring | |
| 9 | 8 | a1i | ⊢ ( 𝑅 ∈ Ring → ℤring ∈ Ring ) |
| 10 | id | ⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Ring ) | |
| 11 | 1z | ⊢ 1 ∈ ℤ | |
| 12 | oveq1 | ⊢ ( 𝑛 = 1 → ( 𝑛 · 1 ) = ( 1 · 1 ) ) | |
| 13 | ovex | ⊢ ( 1 · 1 ) ∈ V | |
| 14 | 12 2 13 | fvmpt | ⊢ ( 1 ∈ ℤ → ( 𝐹 ‘ 1 ) = ( 1 · 1 ) ) |
| 15 | 11 14 | ax-mp | ⊢ ( 𝐹 ‘ 1 ) = ( 1 · 1 ) |
| 16 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 17 | 16 3 | ringidcl | ⊢ ( 𝑅 ∈ Ring → 1 ∈ ( Base ‘ 𝑅 ) ) |
| 18 | 16 1 | mulg1 | ⊢ ( 1 ∈ ( Base ‘ 𝑅 ) → ( 1 · 1 ) = 1 ) |
| 19 | 17 18 | syl | ⊢ ( 𝑅 ∈ Ring → ( 1 · 1 ) = 1 ) |
| 20 | 15 19 | eqtrid | ⊢ ( 𝑅 ∈ Ring → ( 𝐹 ‘ 1 ) = 1 ) |
| 21 | ringgrp | ⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Grp ) | |
| 22 | 21 | adantr | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → 𝑅 ∈ Grp ) |
| 23 | simprr | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → 𝑦 ∈ ℤ ) | |
| 24 | 17 | adantr | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → 1 ∈ ( Base ‘ 𝑅 ) ) |
| 25 | 16 1 | mulgcl | ⊢ ( ( 𝑅 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 1 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑦 · 1 ) ∈ ( Base ‘ 𝑅 ) ) |
| 26 | 22 23 24 25 | syl3anc | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → ( 𝑦 · 1 ) ∈ ( Base ‘ 𝑅 ) ) |
| 27 | 16 7 3 | ringlidm | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑦 · 1 ) ∈ ( Base ‘ 𝑅 ) ) → ( 1 ( .r ‘ 𝑅 ) ( 𝑦 · 1 ) ) = ( 𝑦 · 1 ) ) |
| 28 | 26 27 | syldan | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → ( 1 ( .r ‘ 𝑅 ) ( 𝑦 · 1 ) ) = ( 𝑦 · 1 ) ) |
| 29 | 28 | oveq2d | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → ( 𝑥 · ( 1 ( .r ‘ 𝑅 ) ( 𝑦 · 1 ) ) ) = ( 𝑥 · ( 𝑦 · 1 ) ) ) |
| 30 | simpl | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → 𝑅 ∈ Ring ) | |
| 31 | simprl | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → 𝑥 ∈ ℤ ) | |
| 32 | 16 1 7 | mulgass2 | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑥 ∈ ℤ ∧ 1 ∈ ( Base ‘ 𝑅 ) ∧ ( 𝑦 · 1 ) ∈ ( Base ‘ 𝑅 ) ) ) → ( ( 𝑥 · 1 ) ( .r ‘ 𝑅 ) ( 𝑦 · 1 ) ) = ( 𝑥 · ( 1 ( .r ‘ 𝑅 ) ( 𝑦 · 1 ) ) ) ) |
| 33 | 30 31 24 26 32 | syl13anc | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → ( ( 𝑥 · 1 ) ( .r ‘ 𝑅 ) ( 𝑦 · 1 ) ) = ( 𝑥 · ( 1 ( .r ‘ 𝑅 ) ( 𝑦 · 1 ) ) ) ) |
| 34 | 16 1 | mulgass | ⊢ ( ( 𝑅 ∈ Grp ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 1 ∈ ( Base ‘ 𝑅 ) ) ) → ( ( 𝑥 · 𝑦 ) · 1 ) = ( 𝑥 · ( 𝑦 · 1 ) ) ) |
| 35 | 22 31 23 24 34 | syl13anc | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → ( ( 𝑥 · 𝑦 ) · 1 ) = ( 𝑥 · ( 𝑦 · 1 ) ) ) |
| 36 | 29 33 35 | 3eqtr4rd | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → ( ( 𝑥 · 𝑦 ) · 1 ) = ( ( 𝑥 · 1 ) ( .r ‘ 𝑅 ) ( 𝑦 · 1 ) ) ) |
| 37 | zmulcl | ⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) → ( 𝑥 · 𝑦 ) ∈ ℤ ) | |
| 38 | 37 | adantl | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → ( 𝑥 · 𝑦 ) ∈ ℤ ) |
| 39 | oveq1 | ⊢ ( 𝑛 = ( 𝑥 · 𝑦 ) → ( 𝑛 · 1 ) = ( ( 𝑥 · 𝑦 ) · 1 ) ) | |
| 40 | ovex | ⊢ ( ( 𝑥 · 𝑦 ) · 1 ) ∈ V | |
| 41 | 39 2 40 | fvmpt | ⊢ ( ( 𝑥 · 𝑦 ) ∈ ℤ → ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) = ( ( 𝑥 · 𝑦 ) · 1 ) ) |
| 42 | 38 41 | syl | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) = ( ( 𝑥 · 𝑦 ) · 1 ) ) |
| 43 | oveq1 | ⊢ ( 𝑛 = 𝑥 → ( 𝑛 · 1 ) = ( 𝑥 · 1 ) ) | |
| 44 | ovex | ⊢ ( 𝑥 · 1 ) ∈ V | |
| 45 | 43 2 44 | fvmpt | ⊢ ( 𝑥 ∈ ℤ → ( 𝐹 ‘ 𝑥 ) = ( 𝑥 · 1 ) ) |
| 46 | oveq1 | ⊢ ( 𝑛 = 𝑦 → ( 𝑛 · 1 ) = ( 𝑦 · 1 ) ) | |
| 47 | ovex | ⊢ ( 𝑦 · 1 ) ∈ V | |
| 48 | 46 2 47 | fvmpt | ⊢ ( 𝑦 ∈ ℤ → ( 𝐹 ‘ 𝑦 ) = ( 𝑦 · 1 ) ) |
| 49 | 45 48 | oveqan12d | ⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) → ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝐹 ‘ 𝑦 ) ) = ( ( 𝑥 · 1 ) ( .r ‘ 𝑅 ) ( 𝑦 · 1 ) ) ) |
| 50 | 49 | adantl | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝐹 ‘ 𝑦 ) ) = ( ( 𝑥 · 1 ) ( .r ‘ 𝑅 ) ( 𝑦 · 1 ) ) ) |
| 51 | 36 42 50 | 3eqtr4d | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝐹 ‘ 𝑦 ) ) ) |
| 52 | 1 2 16 | mulgghm2 | ⊢ ( ( 𝑅 ∈ Grp ∧ 1 ∈ ( Base ‘ 𝑅 ) ) → 𝐹 ∈ ( ℤring GrpHom 𝑅 ) ) |
| 53 | 21 17 52 | syl2anc | ⊢ ( 𝑅 ∈ Ring → 𝐹 ∈ ( ℤring GrpHom 𝑅 ) ) |
| 54 | 4 5 3 6 7 9 10 20 51 53 | isrhm2d | ⊢ ( 𝑅 ∈ Ring → 𝐹 ∈ ( ℤring RingHom 𝑅 ) ) |