This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The powers of the element 1 give a ring homomorphism from ZZ to a ring. (Contributed by Mario Carneiro, 14-Jun-2015) (Revised by AV, 12-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mulgghm2.m | |- .x. = ( .g ` R ) |
|
| mulgghm2.f | |- F = ( n e. ZZ |-> ( n .x. .1. ) ) |
||
| mulgrhm.1 | |- .1. = ( 1r ` R ) |
||
| Assertion | mulgrhm | |- ( R e. Ring -> F e. ( ZZring RingHom R ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulgghm2.m | |- .x. = ( .g ` R ) |
|
| 2 | mulgghm2.f | |- F = ( n e. ZZ |-> ( n .x. .1. ) ) |
|
| 3 | mulgrhm.1 | |- .1. = ( 1r ` R ) |
|
| 4 | zringbas | |- ZZ = ( Base ` ZZring ) |
|
| 5 | zring1 | |- 1 = ( 1r ` ZZring ) |
|
| 6 | zringmulr | |- x. = ( .r ` ZZring ) |
|
| 7 | eqid | |- ( .r ` R ) = ( .r ` R ) |
|
| 8 | zringring | |- ZZring e. Ring |
|
| 9 | 8 | a1i | |- ( R e. Ring -> ZZring e. Ring ) |
| 10 | id | |- ( R e. Ring -> R e. Ring ) |
|
| 11 | 1z | |- 1 e. ZZ |
|
| 12 | oveq1 | |- ( n = 1 -> ( n .x. .1. ) = ( 1 .x. .1. ) ) |
|
| 13 | ovex | |- ( 1 .x. .1. ) e. _V |
|
| 14 | 12 2 13 | fvmpt | |- ( 1 e. ZZ -> ( F ` 1 ) = ( 1 .x. .1. ) ) |
| 15 | 11 14 | ax-mp | |- ( F ` 1 ) = ( 1 .x. .1. ) |
| 16 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 17 | 16 3 | ringidcl | |- ( R e. Ring -> .1. e. ( Base ` R ) ) |
| 18 | 16 1 | mulg1 | |- ( .1. e. ( Base ` R ) -> ( 1 .x. .1. ) = .1. ) |
| 19 | 17 18 | syl | |- ( R e. Ring -> ( 1 .x. .1. ) = .1. ) |
| 20 | 15 19 | eqtrid | |- ( R e. Ring -> ( F ` 1 ) = .1. ) |
| 21 | ringgrp | |- ( R e. Ring -> R e. Grp ) |
|
| 22 | 21 | adantr | |- ( ( R e. Ring /\ ( x e. ZZ /\ y e. ZZ ) ) -> R e. Grp ) |
| 23 | simprr | |- ( ( R e. Ring /\ ( x e. ZZ /\ y e. ZZ ) ) -> y e. ZZ ) |
|
| 24 | 17 | adantr | |- ( ( R e. Ring /\ ( x e. ZZ /\ y e. ZZ ) ) -> .1. e. ( Base ` R ) ) |
| 25 | 16 1 | mulgcl | |- ( ( R e. Grp /\ y e. ZZ /\ .1. e. ( Base ` R ) ) -> ( y .x. .1. ) e. ( Base ` R ) ) |
| 26 | 22 23 24 25 | syl3anc | |- ( ( R e. Ring /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( y .x. .1. ) e. ( Base ` R ) ) |
| 27 | 16 7 3 | ringlidm | |- ( ( R e. Ring /\ ( y .x. .1. ) e. ( Base ` R ) ) -> ( .1. ( .r ` R ) ( y .x. .1. ) ) = ( y .x. .1. ) ) |
| 28 | 26 27 | syldan | |- ( ( R e. Ring /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( .1. ( .r ` R ) ( y .x. .1. ) ) = ( y .x. .1. ) ) |
| 29 | 28 | oveq2d | |- ( ( R e. Ring /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( x .x. ( .1. ( .r ` R ) ( y .x. .1. ) ) ) = ( x .x. ( y .x. .1. ) ) ) |
| 30 | simpl | |- ( ( R e. Ring /\ ( x e. ZZ /\ y e. ZZ ) ) -> R e. Ring ) |
|
| 31 | simprl | |- ( ( R e. Ring /\ ( x e. ZZ /\ y e. ZZ ) ) -> x e. ZZ ) |
|
| 32 | 16 1 7 | mulgass2 | |- ( ( R e. Ring /\ ( x e. ZZ /\ .1. e. ( Base ` R ) /\ ( y .x. .1. ) e. ( Base ` R ) ) ) -> ( ( x .x. .1. ) ( .r ` R ) ( y .x. .1. ) ) = ( x .x. ( .1. ( .r ` R ) ( y .x. .1. ) ) ) ) |
| 33 | 30 31 24 26 32 | syl13anc | |- ( ( R e. Ring /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( ( x .x. .1. ) ( .r ` R ) ( y .x. .1. ) ) = ( x .x. ( .1. ( .r ` R ) ( y .x. .1. ) ) ) ) |
| 34 | 16 1 | mulgass | |- ( ( R e. Grp /\ ( x e. ZZ /\ y e. ZZ /\ .1. e. ( Base ` R ) ) ) -> ( ( x x. y ) .x. .1. ) = ( x .x. ( y .x. .1. ) ) ) |
| 35 | 22 31 23 24 34 | syl13anc | |- ( ( R e. Ring /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( ( x x. y ) .x. .1. ) = ( x .x. ( y .x. .1. ) ) ) |
| 36 | 29 33 35 | 3eqtr4rd | |- ( ( R e. Ring /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( ( x x. y ) .x. .1. ) = ( ( x .x. .1. ) ( .r ` R ) ( y .x. .1. ) ) ) |
| 37 | zmulcl | |- ( ( x e. ZZ /\ y e. ZZ ) -> ( x x. y ) e. ZZ ) |
|
| 38 | 37 | adantl | |- ( ( R e. Ring /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( x x. y ) e. ZZ ) |
| 39 | oveq1 | |- ( n = ( x x. y ) -> ( n .x. .1. ) = ( ( x x. y ) .x. .1. ) ) |
|
| 40 | ovex | |- ( ( x x. y ) .x. .1. ) e. _V |
|
| 41 | 39 2 40 | fvmpt | |- ( ( x x. y ) e. ZZ -> ( F ` ( x x. y ) ) = ( ( x x. y ) .x. .1. ) ) |
| 42 | 38 41 | syl | |- ( ( R e. Ring /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( F ` ( x x. y ) ) = ( ( x x. y ) .x. .1. ) ) |
| 43 | oveq1 | |- ( n = x -> ( n .x. .1. ) = ( x .x. .1. ) ) |
|
| 44 | ovex | |- ( x .x. .1. ) e. _V |
|
| 45 | 43 2 44 | fvmpt | |- ( x e. ZZ -> ( F ` x ) = ( x .x. .1. ) ) |
| 46 | oveq1 | |- ( n = y -> ( n .x. .1. ) = ( y .x. .1. ) ) |
|
| 47 | ovex | |- ( y .x. .1. ) e. _V |
|
| 48 | 46 2 47 | fvmpt | |- ( y e. ZZ -> ( F ` y ) = ( y .x. .1. ) ) |
| 49 | 45 48 | oveqan12d | |- ( ( x e. ZZ /\ y e. ZZ ) -> ( ( F ` x ) ( .r ` R ) ( F ` y ) ) = ( ( x .x. .1. ) ( .r ` R ) ( y .x. .1. ) ) ) |
| 50 | 49 | adantl | |- ( ( R e. Ring /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( ( F ` x ) ( .r ` R ) ( F ` y ) ) = ( ( x .x. .1. ) ( .r ` R ) ( y .x. .1. ) ) ) |
| 51 | 36 42 50 | 3eqtr4d | |- ( ( R e. Ring /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( F ` ( x x. y ) ) = ( ( F ` x ) ( .r ` R ) ( F ` y ) ) ) |
| 52 | 1 2 16 | mulgghm2 | |- ( ( R e. Grp /\ .1. e. ( Base ` R ) ) -> F e. ( ZZring GrpHom R ) ) |
| 53 | 21 17 52 | syl2anc | |- ( R e. Ring -> F e. ( ZZring GrpHom R ) ) |
| 54 | 4 5 3 6 7 9 10 20 51 53 | isrhm2d | |- ( R e. Ring -> F e. ( ZZring RingHom R ) ) |