This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The powers of the element 1 give the unique ring homomorphism from ZZ to a ring. (Contributed by Mario Carneiro, 14-Jun-2015) (Revised by AV, 12-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mulgghm2.m | ⊢ · = ( .g ‘ 𝑅 ) | |
| mulgghm2.f | ⊢ 𝐹 = ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 1 ) ) | ||
| mulgrhm.1 | ⊢ 1 = ( 1r ‘ 𝑅 ) | ||
| Assertion | mulgrhm2 | ⊢ ( 𝑅 ∈ Ring → ( ℤring RingHom 𝑅 ) = { 𝐹 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulgghm2.m | ⊢ · = ( .g ‘ 𝑅 ) | |
| 2 | mulgghm2.f | ⊢ 𝐹 = ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 1 ) ) | |
| 3 | mulgrhm.1 | ⊢ 1 = ( 1r ‘ 𝑅 ) | |
| 4 | zringbas | ⊢ ℤ = ( Base ‘ ℤring ) | |
| 5 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 6 | 4 5 | rhmf | ⊢ ( 𝑓 ∈ ( ℤring RingHom 𝑅 ) → 𝑓 : ℤ ⟶ ( Base ‘ 𝑅 ) ) |
| 7 | 6 | adantl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑓 ∈ ( ℤring RingHom 𝑅 ) ) → 𝑓 : ℤ ⟶ ( Base ‘ 𝑅 ) ) |
| 8 | 7 | feqmptd | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑓 ∈ ( ℤring RingHom 𝑅 ) ) → 𝑓 = ( 𝑛 ∈ ℤ ↦ ( 𝑓 ‘ 𝑛 ) ) ) |
| 9 | rhmghm | ⊢ ( 𝑓 ∈ ( ℤring RingHom 𝑅 ) → 𝑓 ∈ ( ℤring GrpHom 𝑅 ) ) | |
| 10 | 9 | ad2antlr | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑓 ∈ ( ℤring RingHom 𝑅 ) ) ∧ 𝑛 ∈ ℤ ) → 𝑓 ∈ ( ℤring GrpHom 𝑅 ) ) |
| 11 | simpr | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑓 ∈ ( ℤring RingHom 𝑅 ) ) ∧ 𝑛 ∈ ℤ ) → 𝑛 ∈ ℤ ) | |
| 12 | 1zzd | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑓 ∈ ( ℤring RingHom 𝑅 ) ) ∧ 𝑛 ∈ ℤ ) → 1 ∈ ℤ ) | |
| 13 | eqid | ⊢ ( .g ‘ ℤring ) = ( .g ‘ ℤring ) | |
| 14 | 4 13 1 | ghmmulg | ⊢ ( ( 𝑓 ∈ ( ℤring GrpHom 𝑅 ) ∧ 𝑛 ∈ ℤ ∧ 1 ∈ ℤ ) → ( 𝑓 ‘ ( 𝑛 ( .g ‘ ℤring ) 1 ) ) = ( 𝑛 · ( 𝑓 ‘ 1 ) ) ) |
| 15 | 10 11 12 14 | syl3anc | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑓 ∈ ( ℤring RingHom 𝑅 ) ) ∧ 𝑛 ∈ ℤ ) → ( 𝑓 ‘ ( 𝑛 ( .g ‘ ℤring ) 1 ) ) = ( 𝑛 · ( 𝑓 ‘ 1 ) ) ) |
| 16 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 17 | cnfldmulg | ⊢ ( ( 𝑛 ∈ ℤ ∧ 1 ∈ ℂ ) → ( 𝑛 ( .g ‘ ℂfld ) 1 ) = ( 𝑛 · 1 ) ) | |
| 18 | 16 17 | mpan2 | ⊢ ( 𝑛 ∈ ℤ → ( 𝑛 ( .g ‘ ℂfld ) 1 ) = ( 𝑛 · 1 ) ) |
| 19 | 1z | ⊢ 1 ∈ ℤ | |
| 20 | 18 | adantr | ⊢ ( ( 𝑛 ∈ ℤ ∧ 1 ∈ ℤ ) → ( 𝑛 ( .g ‘ ℂfld ) 1 ) = ( 𝑛 · 1 ) ) |
| 21 | zringmulg | ⊢ ( ( 𝑛 ∈ ℤ ∧ 1 ∈ ℤ ) → ( 𝑛 ( .g ‘ ℤring ) 1 ) = ( 𝑛 · 1 ) ) | |
| 22 | 20 21 | eqtr4d | ⊢ ( ( 𝑛 ∈ ℤ ∧ 1 ∈ ℤ ) → ( 𝑛 ( .g ‘ ℂfld ) 1 ) = ( 𝑛 ( .g ‘ ℤring ) 1 ) ) |
| 23 | 19 22 | mpan2 | ⊢ ( 𝑛 ∈ ℤ → ( 𝑛 ( .g ‘ ℂfld ) 1 ) = ( 𝑛 ( .g ‘ ℤring ) 1 ) ) |
| 24 | zcn | ⊢ ( 𝑛 ∈ ℤ → 𝑛 ∈ ℂ ) | |
| 25 | 24 | mulridd | ⊢ ( 𝑛 ∈ ℤ → ( 𝑛 · 1 ) = 𝑛 ) |
| 26 | 18 23 25 | 3eqtr3d | ⊢ ( 𝑛 ∈ ℤ → ( 𝑛 ( .g ‘ ℤring ) 1 ) = 𝑛 ) |
| 27 | 26 | adantl | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑓 ∈ ( ℤring RingHom 𝑅 ) ) ∧ 𝑛 ∈ ℤ ) → ( 𝑛 ( .g ‘ ℤring ) 1 ) = 𝑛 ) |
| 28 | 27 | fveq2d | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑓 ∈ ( ℤring RingHom 𝑅 ) ) ∧ 𝑛 ∈ ℤ ) → ( 𝑓 ‘ ( 𝑛 ( .g ‘ ℤring ) 1 ) ) = ( 𝑓 ‘ 𝑛 ) ) |
| 29 | zring1 | ⊢ 1 = ( 1r ‘ ℤring ) | |
| 30 | 29 3 | rhm1 | ⊢ ( 𝑓 ∈ ( ℤring RingHom 𝑅 ) → ( 𝑓 ‘ 1 ) = 1 ) |
| 31 | 30 | ad2antlr | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑓 ∈ ( ℤring RingHom 𝑅 ) ) ∧ 𝑛 ∈ ℤ ) → ( 𝑓 ‘ 1 ) = 1 ) |
| 32 | 31 | oveq2d | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑓 ∈ ( ℤring RingHom 𝑅 ) ) ∧ 𝑛 ∈ ℤ ) → ( 𝑛 · ( 𝑓 ‘ 1 ) ) = ( 𝑛 · 1 ) ) |
| 33 | 15 28 32 | 3eqtr3d | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑓 ∈ ( ℤring RingHom 𝑅 ) ) ∧ 𝑛 ∈ ℤ ) → ( 𝑓 ‘ 𝑛 ) = ( 𝑛 · 1 ) ) |
| 34 | 33 | mpteq2dva | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑓 ∈ ( ℤring RingHom 𝑅 ) ) → ( 𝑛 ∈ ℤ ↦ ( 𝑓 ‘ 𝑛 ) ) = ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 1 ) ) ) |
| 35 | 8 34 | eqtrd | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑓 ∈ ( ℤring RingHom 𝑅 ) ) → 𝑓 = ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 1 ) ) ) |
| 36 | 35 2 | eqtr4di | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑓 ∈ ( ℤring RingHom 𝑅 ) ) → 𝑓 = 𝐹 ) |
| 37 | velsn | ⊢ ( 𝑓 ∈ { 𝐹 } ↔ 𝑓 = 𝐹 ) | |
| 38 | 36 37 | sylibr | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑓 ∈ ( ℤring RingHom 𝑅 ) ) → 𝑓 ∈ { 𝐹 } ) |
| 39 | 38 | ex | ⊢ ( 𝑅 ∈ Ring → ( 𝑓 ∈ ( ℤring RingHom 𝑅 ) → 𝑓 ∈ { 𝐹 } ) ) |
| 40 | 39 | ssrdv | ⊢ ( 𝑅 ∈ Ring → ( ℤring RingHom 𝑅 ) ⊆ { 𝐹 } ) |
| 41 | 1 2 3 | mulgrhm | ⊢ ( 𝑅 ∈ Ring → 𝐹 ∈ ( ℤring RingHom 𝑅 ) ) |
| 42 | 41 | snssd | ⊢ ( 𝑅 ∈ Ring → { 𝐹 } ⊆ ( ℤring RingHom 𝑅 ) ) |
| 43 | 40 42 | eqssd | ⊢ ( 𝑅 ∈ Ring → ( ℤring RingHom 𝑅 ) = { 𝐹 } ) |